added daily sharpe ratio hyperopt loss method, ty @djacky
This commit is contained in:
parent
2396f35586
commit
66aad3d808
@ -256,7 +256,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
|
||||
'Different functions can generate completely different results, '
|
||||
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
|
||||
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss.'
|
||||
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily.'
|
||||
'(default: `%(default)s`).',
|
||||
metavar='NAME',
|
||||
default=constants.DEFAULT_HYPEROPT_LOSS,
|
||||
|
69
freqtrade/optimize/hyperopt_loss_sharpe_daily.py
Normal file
69
freqtrade/optimize/hyperopt_loss_sharpe_daily.py
Normal file
@ -0,0 +1,69 @@
|
||||
"""
|
||||
SharpeHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SharpeHyperOptLossDaily(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sharpe Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(
|
||||
results: DataFrame,
|
||||
trade_count: int,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
*args,
|
||||
**kwargs
|
||||
) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sharpe Ratio calculation.
|
||||
"""
|
||||
total_profit = results.profit_percent
|
||||
# days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
# expected_yearly_return = total_profit.sum() / days_period
|
||||
|
||||
# if np.std(total_profit) != 0.0:
|
||||
# sharp_ratio = expected_yearly_return / np.std(total_profit) * np.sqrt(365)
|
||||
# else:
|
||||
# # Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
# sharp_ratio = -20.0
|
||||
|
||||
# # print(expected_yearly_return, np.std(total_profit), sharp_ratio)
|
||||
# return -sharp_ratio
|
||||
|
||||
sum_daily = (
|
||||
results.resample("D", on="close_time").agg(
|
||||
{"profit_percent": sum, "profit_abs": sum}
|
||||
)
|
||||
* 100.0
|
||||
)
|
||||
|
||||
if np.std(total_profit) != 0.0:
|
||||
sharp_ratio = (
|
||||
sum_daily["profit_percent"].mean()
|
||||
/ sum_daily["profit_percent"].std()
|
||||
* np.sqrt(365)
|
||||
)
|
||||
else:
|
||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
sharp_ratio = -20.0
|
||||
|
||||
return -sharp_ratio
|
Loading…
Reference in New Issue
Block a user