refactoring - remove unnecessary config file
This commit is contained in:
parent
52b60c5cbb
commit
6606a0113f
@ -1,7 +1,7 @@
|
||||
import copy
|
||||
import logging
|
||||
import shutil
|
||||
from datetime import datetime, timezone
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from math import cos, sin
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
@ -21,7 +21,6 @@ from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.freqai import freqai_util
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
@ -84,16 +83,17 @@ class FreqaiDataKitchen:
|
||||
self.backtest_live_models = config.get("freqai_backtest_live_models", False)
|
||||
|
||||
if not self.live:
|
||||
self.full_path = freqai_util.get_full_models_path(self.config)
|
||||
self.full_timerange = self.create_fulltimerange(
|
||||
self.config["timerange"], self.freqai_config.get("train_period_days", 0)
|
||||
)
|
||||
self.full_path = self.get_full_models_path(self.config)
|
||||
|
||||
if self.backtest_live_models:
|
||||
self.set_timerange_from_ready_models()
|
||||
(self.training_timeranges,
|
||||
self.backtesting_timeranges) = self.split_timerange_live_models()
|
||||
if self.pair:
|
||||
self.set_timerange_from_ready_models()
|
||||
(self.training_timeranges,
|
||||
self.backtesting_timeranges) = self.split_timerange_live_models()
|
||||
else:
|
||||
self.full_timerange = self.create_fulltimerange(
|
||||
self.config["timerange"], self.freqai_config.get("train_period_days", 0)
|
||||
)
|
||||
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
|
||||
self.full_timerange,
|
||||
config["freqai"]["train_period_days"],
|
||||
@ -117,7 +117,7 @@ class FreqaiDataKitchen:
|
||||
:param metadata: dict = strategy furnished pair metadata
|
||||
:param trained_timestamp: int = timestamp of most recent training
|
||||
"""
|
||||
self.full_path = freqai_util.get_full_models_path(self.config)
|
||||
self.full_path = self.get_full_models_path(self.config)
|
||||
self.data_path = Path(
|
||||
self.full_path
|
||||
/ f"sub-train-{pair.split('/')[0]}_{trained_timestamp}"
|
||||
@ -1300,10 +1300,102 @@ class FreqaiDataKitchen:
|
||||
def set_timerange_from_ready_models(self):
|
||||
backtesting_timerange, \
|
||||
assets_end_dates = (
|
||||
freqai_util.get_timerange_and_assets_end_dates_from_ready_models(self.full_path))
|
||||
self.get_timerange_and_assets_end_dates_from_ready_models(self.full_path))
|
||||
|
||||
self.backtest_live_models_data = {
|
||||
"backtesting_timerange": backtesting_timerange,
|
||||
"assets_end_dates": assets_end_dates
|
||||
}
|
||||
return
|
||||
|
||||
def get_full_models_path(self, config: Config) -> Path:
|
||||
"""
|
||||
Returns default FreqAI model path
|
||||
:param config: Configuration dictionary
|
||||
"""
|
||||
freqai_config: Dict[str, Any] = config["freqai"]
|
||||
return Path(
|
||||
config["user_data_dir"] / "models" / str(freqai_config.get("identifier"))
|
||||
)
|
||||
|
||||
def get_timerange_and_assets_end_dates_from_ready_models(
|
||||
self, models_path: Path) -> Tuple[TimeRange, Dict[str, Any]]:
|
||||
"""
|
||||
Returns timerange information based on a FreqAI model directory
|
||||
:param models_path: FreqAI model path
|
||||
|
||||
:return: a Tuple with (Timerange calculated from directory and
|
||||
a Dict with pair and model end training dates info)
|
||||
"""
|
||||
all_models_end_dates = []
|
||||
assets_end_dates: Dict[str, Any] = self.get_assets_timestamps_training_from_ready_models(
|
||||
models_path)
|
||||
for key in assets_end_dates:
|
||||
for model_end_date in assets_end_dates[key]:
|
||||
if model_end_date not in all_models_end_dates:
|
||||
all_models_end_dates.append(model_end_date)
|
||||
|
||||
if len(all_models_end_dates) == 0:
|
||||
raise OperationalException(
|
||||
'At least 1 saved model is required to '
|
||||
'run backtest with the freqai-backtest-live-models option'
|
||||
)
|
||||
|
||||
if len(all_models_end_dates) == 1:
|
||||
logger.warning(
|
||||
"Only 1 model was found. Backtesting will run with the "
|
||||
"timerange from the end of the training date to the current date"
|
||||
)
|
||||
|
||||
finish_timestamp = int(datetime.now(tz=timezone.utc).timestamp())
|
||||
if len(all_models_end_dates) > 1:
|
||||
# After last model end date, use the same period from previous model
|
||||
# to finish the backtest
|
||||
all_models_end_dates.sort(reverse=True)
|
||||
finish_timestamp = all_models_end_dates[0] + \
|
||||
(all_models_end_dates[0] - all_models_end_dates[1])
|
||||
|
||||
all_models_end_dates.append(finish_timestamp)
|
||||
all_models_end_dates.sort()
|
||||
start_date = (datetime(*datetime.fromtimestamp(min(all_models_end_dates),
|
||||
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
|
||||
end_date = (datetime(*datetime.fromtimestamp(max(all_models_end_dates),
|
||||
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
|
||||
|
||||
# add 1 day to string timerange to ensure BT module will load all dataframe data
|
||||
end_date = end_date + timedelta(days=1)
|
||||
backtesting_timerange = TimeRange(
|
||||
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
|
||||
)
|
||||
return backtesting_timerange, assets_end_dates
|
||||
|
||||
def get_assets_timestamps_training_from_ready_models(
|
||||
self, models_path: Path) -> Dict[str, Any]:
|
||||
"""
|
||||
Scan the models path and returns all assets end training dates (timestamp)
|
||||
:param models_path: FreqAI model path
|
||||
|
||||
:return: a Dict with asset and model end training dates info
|
||||
"""
|
||||
assets_end_dates: Dict[str, Any] = {}
|
||||
if not models_path.is_dir():
|
||||
raise OperationalException(
|
||||
'Model folders not found. Saved models are required '
|
||||
'to run backtest with the freqai-backtest-live-models option'
|
||||
)
|
||||
for model_dir in models_path.iterdir():
|
||||
if str(model_dir.name).startswith("sub-train"):
|
||||
model_end_date = int(model_dir.name.split("_")[1])
|
||||
asset = model_dir.name.split("_")[0].replace("sub-train-", "")
|
||||
model_file_name = (
|
||||
f"cb_{str(model_dir.name).replace('sub-train-', '').lower()}"
|
||||
"_model.joblib"
|
||||
)
|
||||
|
||||
model_path_file = Path(model_dir / model_file_name)
|
||||
if model_path_file.is_file():
|
||||
if asset not in assets_end_dates:
|
||||
assets_end_dates[asset] = []
|
||||
assets_end_dates[asset].append(model_end_date)
|
||||
|
||||
return assets_end_dates
|
||||
|
@ -1,122 +0,0 @@
|
||||
"""
|
||||
FreqAI generic functions
|
||||
"""
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_full_models_path(config: Config) -> Path:
|
||||
"""
|
||||
Returns default FreqAI model path
|
||||
:param config: Configuration dictionary
|
||||
"""
|
||||
freqai_config: Dict[str, Any] = config["freqai"]
|
||||
return Path(
|
||||
config["user_data_dir"] / "models" / str(freqai_config.get("identifier"))
|
||||
)
|
||||
|
||||
|
||||
def get_timerange_and_assets_end_dates_from_ready_models(
|
||||
models_path: Path) -> Tuple[TimeRange, Dict[str, Any]]:
|
||||
"""
|
||||
Returns timerange information based on a FreqAI model directory
|
||||
:param models_path: FreqAI model path
|
||||
|
||||
:return: a Tuple with (Timerange calculated from directory and
|
||||
a Dict with pair and model end training dates info)
|
||||
"""
|
||||
all_models_end_dates = []
|
||||
assets_end_dates: Dict[str, Any] = get_assets_timestamps_training_from_ready_models(models_path)
|
||||
for key in assets_end_dates:
|
||||
for model_end_date in assets_end_dates[key]:
|
||||
if model_end_date not in all_models_end_dates:
|
||||
all_models_end_dates.append(model_end_date)
|
||||
|
||||
if len(all_models_end_dates) == 0:
|
||||
raise OperationalException(
|
||||
'At least 1 saved model is required to '
|
||||
'run backtest with the freqai-backtest-live-models option'
|
||||
)
|
||||
|
||||
if len(all_models_end_dates) == 1:
|
||||
logger.warning(
|
||||
"Only 1 model was found. Backtesting will run with the "
|
||||
"timerange from the end of the training date to the current date"
|
||||
)
|
||||
|
||||
finish_timestamp = int(datetime.now(tz=timezone.utc).timestamp())
|
||||
if len(all_models_end_dates) > 1:
|
||||
# After last model end date, use the same period from previous model
|
||||
# to finish the backtest
|
||||
all_models_end_dates.sort(reverse=True)
|
||||
finish_timestamp = all_models_end_dates[0] + \
|
||||
(all_models_end_dates[0] - all_models_end_dates[1])
|
||||
|
||||
all_models_end_dates.append(finish_timestamp)
|
||||
all_models_end_dates.sort()
|
||||
start_date = (datetime(*datetime.fromtimestamp(min(all_models_end_dates),
|
||||
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
|
||||
end_date = (datetime(*datetime.fromtimestamp(max(all_models_end_dates),
|
||||
timezone.utc).timetuple()[:3], tzinfo=timezone.utc))
|
||||
|
||||
# add 1 day to string timerange to ensure BT module will load all dataframe data
|
||||
end_date = end_date + timedelta(days=1)
|
||||
backtesting_timerange = TimeRange(
|
||||
'date', 'date', int(start_date.timestamp()), int(end_date.timestamp())
|
||||
)
|
||||
return backtesting_timerange, assets_end_dates
|
||||
|
||||
|
||||
def get_assets_timestamps_training_from_ready_models(models_path: Path) -> Dict[str, Any]:
|
||||
"""
|
||||
Scan the models path and returns all assets end training dates (timestamp)
|
||||
:param models_path: FreqAI model path
|
||||
|
||||
:return: a Dict with asset and model end training dates info
|
||||
"""
|
||||
assets_end_dates: Dict[str, Any] = {}
|
||||
if not models_path.is_dir():
|
||||
raise OperationalException(
|
||||
'Model folders not found. Saved models are required '
|
||||
'to run backtest with the freqai-backtest-live-models option'
|
||||
)
|
||||
for model_dir in models_path.iterdir():
|
||||
if str(model_dir.name).startswith("sub-train"):
|
||||
model_end_date = int(model_dir.name.split("_")[1])
|
||||
asset = model_dir.name.split("_")[0].replace("sub-train-", "")
|
||||
model_file_name = (
|
||||
f"cb_{str(model_dir.name).replace('sub-train-', '').lower()}"
|
||||
"_model.joblib"
|
||||
)
|
||||
|
||||
model_path_file = Path(model_dir / model_file_name)
|
||||
if model_path_file.is_file():
|
||||
if asset not in assets_end_dates:
|
||||
assets_end_dates[asset] = []
|
||||
assets_end_dates[asset].append(model_end_date)
|
||||
|
||||
return assets_end_dates
|
||||
|
||||
|
||||
def get_timerange_backtest_live_models(config: Config):
|
||||
"""
|
||||
Returns a formated timerange for backtest live/ready models
|
||||
:param config: Configuration dictionary
|
||||
|
||||
:return: a string timerange (format example: '20220801-20220822')
|
||||
"""
|
||||
models_path = get_full_models_path(config)
|
||||
timerange, _ = get_timerange_and_assets_end_dates_from_ready_models(models_path)
|
||||
start_date = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
|
||||
end_date = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
|
||||
tr = f"{start_date.strftime('%Y%m%d')}-{end_date.strftime('%Y%m%d')}"
|
||||
return tr
|
@ -191,3 +191,19 @@ def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
|
||||
fig.update_layout(title_text=f"Best and worst features by importance {pair}")
|
||||
label = label.replace('&', '').replace('%', '') # escape two FreqAI specific characters
|
||||
store_plot_file(fig, f"{dk.model_filename}-{label}.html", dk.data_path)
|
||||
|
||||
|
||||
def get_timerange_backtest_live_models(config: Config):
|
||||
"""
|
||||
Returns a formated timerange for backtest live/ready models
|
||||
:param config: Configuration dictionary
|
||||
|
||||
:return: a string timerange (format example: '20220801-20220822')
|
||||
"""
|
||||
dk = FreqaiDataKitchen(config)
|
||||
models_path = dk.get_full_models_path(config)
|
||||
timerange, _ = dk.get_timerange_and_assets_end_dates_from_ready_models(models_path)
|
||||
start_date = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
|
||||
end_date = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
|
||||
tr = f"{start_date.strftime('%Y%m%d')}-{end_date.strftime('%Y%m%d')}"
|
||||
return tr
|
||||
|
@ -135,8 +135,8 @@ class Backtesting:
|
||||
self.precision_mode = self.exchange.precisionMode
|
||||
|
||||
if self.config.get('freqai_backtest_live_models', False):
|
||||
from freqtrade.freqai import freqai_util
|
||||
self.config['timerange'] = freqai_util.get_timerange_backtest_live_models(self.config)
|
||||
from freqtrade.freqai import utils
|
||||
self.config['timerange'] = utils.get_timerange_backtest_live_models(self.config)
|
||||
|
||||
self.timerange = TimeRange.parse_timerange(
|
||||
None if self.config.get('timerange') is None else str(self.config.get('timerange')))
|
||||
|
@ -1,13 +1,18 @@
|
||||
import shutil
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from tests.conftest import log_has_re
|
||||
from tests.freqai.conftest import (get_patched_data_kitchen, make_data_dictionary,
|
||||
make_unfiltered_dataframe)
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.utils import get_timerange_backtest_live_models
|
||||
from tests.conftest import get_patched_exchange, log_has_re
|
||||
from tests.freqai.conftest import (get_patched_data_kitchen, get_patched_freqai_strategy,
|
||||
make_data_dictionary, make_unfiltered_dataframe)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@ -158,3 +163,98 @@ def test_make_train_test_datasets(mocker, freqai_conf):
|
||||
assert data_dictionary
|
||||
assert len(data_dictionary) == 7
|
||||
assert len(data_dictionary['train_features'].index) == 1916
|
||||
|
||||
|
||||
def test_get_pairs_timestamp_validation(mocker, freqai_conf):
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
freqai_conf['freqai'].update({"identifier": "invalid_id"})
|
||||
model_path = freqai.dk.get_full_models_path(freqai_conf)
|
||||
with pytest.raises(
|
||||
OperationalException,
|
||||
match=r'.*required to run backtest with the freqai-backtest-live-models.*'
|
||||
):
|
||||
freqai.dk.get_assets_timestamps_training_from_ready_models(model_path)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model', [
|
||||
'LightGBMRegressor'
|
||||
])
|
||||
def test_get_timerange_from_ready_models(mocker, freqai_conf, model):
|
||||
freqai_conf.update({"freqaimodel": model})
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"strategy": "freqai_test_strat"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180101-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
freqai.dd.pair_dict = MagicMock()
|
||||
|
||||
data_load_timerange = TimeRange.parse_timerange("20180101-20180130")
|
||||
|
||||
# 1516233600 (2018-01-18 00:00) - Start Training 1
|
||||
# 1516406400 (2018-01-20 00:00) - End Training 1 (Backtest slice 1)
|
||||
# 1516579200 (2018-01-22 00:00) - End Training 2 (Backtest slice 2)
|
||||
# 1516838400 (2018-01-25 00:00) - End Timerange
|
||||
|
||||
new_timerange = TimeRange("date", "date", 1516233600, 1516406400)
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
new_timerange = TimeRange("date", "date", 1516406400, 1516579200)
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
model_path = freqai.dk.get_full_models_path(freqai_conf)
|
||||
(backtesting_timerange,
|
||||
pairs_end_dates) = freqai.dk.get_timerange_and_assets_end_dates_from_ready_models(
|
||||
models_path=model_path)
|
||||
|
||||
assert len(pairs_end_dates["ADA"]) == 2
|
||||
assert backtesting_timerange.startts == 1516406400
|
||||
assert backtesting_timerange.stopts == 1516838400
|
||||
|
||||
backtesting_string_timerange = get_timerange_backtest_live_models(freqai_conf)
|
||||
assert backtesting_string_timerange == '20180120-20180125'
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model', [
|
||||
'LightGBMRegressor'
|
||||
])
|
||||
def test_get_full_model_path(mocker, freqai_conf, model):
|
||||
freqai_conf.update({"freqaimodel": model})
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"strategy": "freqai_test_strat"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
freqai.dd.pair_dict = MagicMock()
|
||||
|
||||
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
new_timerange = TimeRange.parse_timerange("20180120-20180130")
|
||||
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
model_path = freqai.dk.get_full_models_path(freqai_conf)
|
||||
assert model_path.is_dir() is True
|
||||
|
@ -1,112 +0,0 @@
|
||||
import platform
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_util import (get_assets_timestamps_training_from_ready_models,
|
||||
get_full_models_path,
|
||||
get_timerange_and_assets_end_dates_from_ready_models,
|
||||
get_timerange_backtest_live_models)
|
||||
from tests.conftest import get_patched_exchange
|
||||
from tests.freqai.conftest import get_patched_freqai_strategy
|
||||
|
||||
|
||||
def is_arm() -> bool:
|
||||
machine = platform.machine()
|
||||
return "arm" in machine or "aarch64" in machine
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model', [
|
||||
'LightGBMRegressor'
|
||||
])
|
||||
def test_get_full_model_path(mocker, freqai_conf, model):
|
||||
if is_arm() and model == 'CatboostRegressor':
|
||||
pytest.skip("CatBoost is not supported on ARM")
|
||||
|
||||
freqai_conf.update({"freqaimodel": model})
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"strategy": "freqai_test_strat"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
freqai.dd.pair_dict = MagicMock()
|
||||
|
||||
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
new_timerange = TimeRange.parse_timerange("20180120-20180130")
|
||||
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
model_path = get_full_models_path(freqai_conf)
|
||||
assert model_path.is_dir() is True
|
||||
|
||||
|
||||
def test_get_pairs_timestamp_validation(mocker, freqai_conf):
|
||||
model_path = get_full_models_path(freqai_conf)
|
||||
with pytest.raises(
|
||||
OperationalException,
|
||||
match=r'.*required to run backtest with the freqai-backtest-live-models.*'
|
||||
):
|
||||
get_assets_timestamps_training_from_ready_models(model_path)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model', [
|
||||
'LightGBMRegressor'
|
||||
])
|
||||
def test_get_timerange_from_ready_models(mocker, freqai_conf, model):
|
||||
if is_arm() and model == 'CatboostRegressor':
|
||||
pytest.skip("CatBoost is not supported on ARM")
|
||||
|
||||
freqai_conf.update({"freqaimodel": model})
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"strategy": "freqai_test_strat"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
timerange = TimeRange.parse_timerange("20180101-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
freqai.dd.pair_dict = MagicMock()
|
||||
|
||||
data_load_timerange = TimeRange.parse_timerange("20180101-20180130")
|
||||
|
||||
# 1516233600 (2018-01-18 00:00) - Start Training 1
|
||||
# 1516406400 (2018-01-20 00:00) - End Training 1 (Backtest slice 1)
|
||||
# 1516579200 (2018-01-22 00:00) - End Training 2 (Backtest slice 2)
|
||||
# 1516838400 (2018-01-25 00:00) - End Timerange
|
||||
|
||||
new_timerange = TimeRange("date", "date", 1516233600, 1516406400)
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
new_timerange = TimeRange("date", "date", 1516406400, 1516579200)
|
||||
freqai.extract_data_and_train_model(
|
||||
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
model_path = get_full_models_path(freqai_conf)
|
||||
(backtesting_timerange,
|
||||
pairs_end_dates) = get_timerange_and_assets_end_dates_from_ready_models(models_path=model_path)
|
||||
|
||||
assert len(pairs_end_dates["ADA"]) == 2
|
||||
assert backtesting_timerange.startts == 1516406400
|
||||
assert backtesting_timerange.stopts == 1516838400
|
||||
|
||||
backtesting_string_timerange = get_timerange_backtest_live_models(freqai_conf)
|
||||
assert backtesting_string_timerange == '20180120-20180125'
|
Loading…
Reference in New Issue
Block a user