Move tests out of freqtrade module

This commit is contained in:
Matthias
2019-09-08 09:42:28 +02:00
parent edda122ed0
commit 65a516e229
72 changed files with 0 additions and 0 deletions

View File

View File

@@ -0,0 +1,235 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy # noqa
# This class is a sample. Feel free to customize it.
class TestStrategyLegacy(IStrategy):
"""
This is a test strategy using the legacy function headers, which will be
removed in a future update.
Please do not use this as a template, but refer to user_data/strategy/sample_strategy.py
for a uptodate version of this template.
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.10
# Optimal ticker interval for the strategy
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
"""
# Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
dataframe['cci'] = ta.CCI(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# ROC
dataframe['roc'] = ta.ROC(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
"""
# Overlap Studies
# ------------------------------------
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
"""
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
"""
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
"""
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
"""
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 30) &
(dataframe['tema'] <= dataframe['bb_middleband']) &
(dataframe['tema'] > dataframe['tema'].shift(1))
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 70) &
(dataframe['tema'] > dataframe['bb_middleband']) &
(dataframe['tema'] < dataframe['tema'].shift(1))
),
'sell'] = 1
return dataframe

View File

@@ -0,0 +1,36 @@
import json
import pytest
from pandas import DataFrame
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.strategy.default_strategy import DefaultStrategy
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/ETH_BTC-1m.json') as data_file:
return parse_ticker_dataframe(json.load(data_file), '1m', pair="UNITTEST/BTC",
fill_missing=True)
def test_default_strategy_structure():
assert hasattr(DefaultStrategy, 'minimal_roi')
assert hasattr(DefaultStrategy, 'stoploss')
assert hasattr(DefaultStrategy, 'ticker_interval')
assert hasattr(DefaultStrategy, 'populate_indicators')
assert hasattr(DefaultStrategy, 'populate_buy_trend')
assert hasattr(DefaultStrategy, 'populate_sell_trend')
def test_default_strategy(result):
strategy = DefaultStrategy({})
metadata = {'pair': 'ETH/BTC'}
assert type(strategy.minimal_roi) is dict
assert type(strategy.stoploss) is float
assert type(strategy.ticker_interval) is str
indicators = strategy.populate_indicators(result, metadata)
assert type(indicators) is DataFrame
assert type(strategy.populate_buy_trend(indicators, metadata)) is DataFrame
assert type(strategy.populate_sell_trend(indicators, metadata)) is DataFrame

View File

@@ -0,0 +1,304 @@
# pragma pylint: disable=missing-docstring, C0103
import logging
from unittest.mock import MagicMock
import arrow
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.history import load_tickerdata_file
from freqtrade.persistence import Trade
from freqtrade.tests.conftest import get_patched_exchange, log_has
from freqtrade.strategy.default_strategy import DefaultStrategy
# Avoid to reinit the same object again and again
_STRATEGY = DefaultStrategy(config={})
def test_returns_latest_buy_signal(mocker, default_conf, ticker_history):
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'buy': 1, 'sell': 0, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (True, False)
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'buy': 0, 'sell': 1, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (False, True)
def test_returns_latest_sell_signal(mocker, default_conf, ticker_history):
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'sell': 1, 'buy': 0, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (False, True)
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'sell': 0, 'buy': 1, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (True, False)
def test_get_signal_empty(default_conf, mocker, caplog):
assert (False, False) == _STRATEGY.get_signal('foo', default_conf['ticker_interval'],
DataFrame())
assert log_has('Empty ticker history for pair foo', caplog)
caplog.clear()
assert (False, False) == _STRATEGY.get_signal('bar', default_conf['ticker_interval'],
[])
assert log_has('Empty ticker history for pair bar', caplog)
def test_get_signal_exception_valueerror(default_conf, mocker, caplog, ticker_history):
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
side_effect=ValueError('xyz')
)
assert (False, False) == _STRATEGY.get_signal('foo', default_conf['ticker_interval'],
ticker_history)
assert log_has('Unable to analyze ticker for pair foo: xyz', caplog)
def test_get_signal_empty_dataframe(default_conf, mocker, caplog, ticker_history):
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([])
)
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'],
ticker_history)
assert log_has('Empty dataframe for pair xyz', caplog)
def test_get_signal_old_dataframe(default_conf, mocker, caplog, ticker_history):
caplog.set_level(logging.INFO)
# default_conf defines a 5m interval. we check interval * 2 + 5m
# this is necessary as the last candle is removed (partial candles) by default
oldtime = arrow.utcnow().shift(minutes=-16)
ticks = DataFrame([{'buy': 1, 'date': oldtime}])
mocker.patch.object(
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame(ticks)
)
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'],
ticker_history)
assert log_has('Outdated history for pair xyz. Last tick is 16 minutes old', caplog)
def test_get_signal_handles_exceptions(mocker, default_conf):
exchange = get_patched_exchange(mocker, default_conf)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
side_effect=Exception('invalid ticker history ')
)
assert _STRATEGY.get_signal(exchange, 'ETH/BTC', '5m') == (False, False)
def test_tickerdata_to_dataframe(default_conf, testdatadir) -> None:
strategy = DefaultStrategy(default_conf)
timerange = TimeRange(None, 'line', 0, -100)
tick = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
data = strategy.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 102 # partial candle was removed
def test_min_roi_reached(default_conf, fee) -> None:
# Use list to confirm sequence does not matter
min_roi_list = [{20: 0.05, 55: 0.01, 0: 0.1},
{0: 0.1, 20: 0.05, 55: 0.01}]
for roi in min_roi_list:
strategy = DefaultStrategy(default_conf)
strategy.minimal_roi = roi
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
open_date=arrow.utcnow().shift(hours=-1).datetime,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
open_rate=1,
)
assert not strategy.min_roi_reached(trade, 0.02, arrow.utcnow().shift(minutes=-56).datetime)
assert strategy.min_roi_reached(trade, 0.12, arrow.utcnow().shift(minutes=-56).datetime)
assert not strategy.min_roi_reached(trade, 0.04, arrow.utcnow().shift(minutes=-39).datetime)
assert strategy.min_roi_reached(trade, 0.06, arrow.utcnow().shift(minutes=-39).datetime)
assert not strategy.min_roi_reached(trade, -0.01, arrow.utcnow().shift(minutes=-1).datetime)
assert strategy.min_roi_reached(trade, 0.02, arrow.utcnow().shift(minutes=-1).datetime)
def test_min_roi_reached2(default_conf, fee) -> None:
# test with ROI raising after last interval
min_roi_list = [{20: 0.07,
30: 0.05,
55: 0.30,
0: 0.1
},
{0: 0.1,
20: 0.07,
30: 0.05,
55: 0.30
},
]
for roi in min_roi_list:
strategy = DefaultStrategy(default_conf)
strategy.minimal_roi = roi
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
open_date=arrow.utcnow().shift(hours=-1).datetime,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
open_rate=1,
)
assert not strategy.min_roi_reached(trade, 0.02, arrow.utcnow().shift(minutes=-56).datetime)
assert strategy.min_roi_reached(trade, 0.12, arrow.utcnow().shift(minutes=-56).datetime)
assert not strategy.min_roi_reached(trade, 0.04, arrow.utcnow().shift(minutes=-39).datetime)
assert strategy.min_roi_reached(trade, 0.071, arrow.utcnow().shift(minutes=-39).datetime)
assert not strategy.min_roi_reached(trade, 0.04, arrow.utcnow().shift(minutes=-26).datetime)
assert strategy.min_roi_reached(trade, 0.06, arrow.utcnow().shift(minutes=-26).datetime)
# Should not trigger with 20% profit since after 55 minutes only 30% is active.
assert not strategy.min_roi_reached(trade, 0.20, arrow.utcnow().shift(minutes=-2).datetime)
assert strategy.min_roi_reached(trade, 0.31, arrow.utcnow().shift(minutes=-2).datetime)
def test_min_roi_reached3(default_conf, fee) -> None:
# test for issue #1948
min_roi = {20: 0.07,
30: 0.05,
55: 0.30,
}
strategy = DefaultStrategy(default_conf)
strategy.minimal_roi = min_roi
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
open_date=arrow.utcnow().shift(hours=-1).datetime,
fee_open=fee.return_value,
fee_close=fee.return_value,
exchange='bittrex',
open_rate=1,
)
assert not strategy.min_roi_reached(trade, 0.02, arrow.utcnow().shift(minutes=-56).datetime)
assert not strategy.min_roi_reached(trade, 0.12, arrow.utcnow().shift(minutes=-56).datetime)
assert not strategy.min_roi_reached(trade, 0.04, arrow.utcnow().shift(minutes=-39).datetime)
assert strategy.min_roi_reached(trade, 0.071, arrow.utcnow().shift(minutes=-39).datetime)
assert not strategy.min_roi_reached(trade, 0.04, arrow.utcnow().shift(minutes=-26).datetime)
assert strategy.min_roi_reached(trade, 0.06, arrow.utcnow().shift(minutes=-26).datetime)
# Should not trigger with 20% profit since after 55 minutes only 30% is active.
assert not strategy.min_roi_reached(trade, 0.20, arrow.utcnow().shift(minutes=-2).datetime)
assert strategy.min_roi_reached(trade, 0.31, arrow.utcnow().shift(minutes=-2).datetime)
def test_analyze_ticker_default(ticker_history, mocker, caplog) -> None:
caplog.set_level(logging.DEBUG)
ind_mock = MagicMock(side_effect=lambda x, meta: x)
buy_mock = MagicMock(side_effect=lambda x, meta: x)
sell_mock = MagicMock(side_effect=lambda x, meta: x)
mocker.patch.multiple(
'freqtrade.strategy.interface.IStrategy',
advise_indicators=ind_mock,
advise_buy=buy_mock,
advise_sell=sell_mock,
)
strategy = DefaultStrategy({})
strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
assert log_has('TA Analysis Launched', caplog)
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
caplog.clear()
strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
# No analysis happens as process_only_new_candles is true
assert ind_mock.call_count == 2
assert buy_mock.call_count == 2
assert buy_mock.call_count == 2
assert log_has('TA Analysis Launched', caplog)
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
def test__analyze_ticker_internal_skip_analyze(ticker_history, mocker, caplog) -> None:
caplog.set_level(logging.DEBUG)
ind_mock = MagicMock(side_effect=lambda x, meta: x)
buy_mock = MagicMock(side_effect=lambda x, meta: x)
sell_mock = MagicMock(side_effect=lambda x, meta: x)
mocker.patch.multiple(
'freqtrade.strategy.interface.IStrategy',
advise_indicators=ind_mock,
advise_buy=buy_mock,
advise_sell=sell_mock,
)
strategy = DefaultStrategy({})
strategy.process_only_new_candles = True
ret = strategy._analyze_ticker_internal(ticker_history, {'pair': 'ETH/BTC'})
assert 'high' in ret.columns
assert 'low' in ret.columns
assert 'close' in ret.columns
assert isinstance(ret, DataFrame)
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
assert log_has('TA Analysis Launched', caplog)
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
caplog.clear()
ret = strategy._analyze_ticker_internal(ticker_history, {'pair': 'ETH/BTC'})
# No analysis happens as process_only_new_candles is true
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
# only skipped analyze adds buy and sell columns, otherwise it's all mocked
assert 'buy' in ret.columns
assert 'sell' in ret.columns
assert ret['buy'].sum() == 0
assert ret['sell'].sum() == 0
assert not log_has('TA Analysis Launched', caplog)
assert log_has('Skipping TA Analysis for already analyzed candle', caplog)
def test_is_pair_locked(default_conf):
strategy = DefaultStrategy(default_conf)
# dict should be empty
assert not strategy._pair_locked_until
pair = 'ETH/BTC'
assert not strategy.is_pair_locked(pair)
strategy.lock_pair(pair, arrow.utcnow().shift(minutes=4).datetime)
# ETH/BTC locked for 4 minutes
assert strategy.is_pair_locked(pair)
# XRP/BTC should not be locked now
pair = 'XRP/BTC'
assert not strategy.is_pair_locked(pair)

View File

@@ -0,0 +1,385 @@
# pragma pylint: disable=missing-docstring, protected-access, C0103
import logging
import tempfile
import warnings
from base64 import urlsafe_b64encode
from os import path
from pathlib import Path
import pytest
from pandas import DataFrame
from freqtrade import OperationalException
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.interface import IStrategy
from freqtrade.tests.conftest import log_has, log_has_re
def test_search_strategy():
default_config = {}
default_location = Path(__file__).parent.parent.parent.joinpath('strategy').resolve()
s, _ = StrategyResolver._search_object(
directory=default_location,
object_type=IStrategy,
kwargs={'config': default_config},
object_name='DefaultStrategy'
)
assert isinstance(s, IStrategy)
s, _ = StrategyResolver._search_object(
directory=default_location,
object_type=IStrategy,
kwargs={'config': default_config},
object_name='NotFoundStrategy'
)
assert s is None
def test_load_strategy(default_conf, result):
default_conf.update({'strategy': 'SampleStrategy'})
resolver = StrategyResolver(default_conf)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_strategy_base64(result, caplog, default_conf):
with open("user_data/strategies/sample_strategy.py", "rb") as file:
encoded_string = urlsafe_b64encode(file.read()).decode("utf-8")
default_conf.update({'strategy': 'SampleStrategy:{}'.format(encoded_string)})
resolver = StrategyResolver(default_conf)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
# Make sure strategy was loaded from base64 (using temp directory)!!
assert log_has_re(r"Using resolved strategy SampleStrategy from '"
+ tempfile.gettempdir() + r"/.*/SampleStrategy\.py'\.\.\.", caplog)
def test_load_strategy_invalid_directory(result, caplog, default_conf):
resolver = StrategyResolver(default_conf)
extra_dir = Path.cwd() / 'some/path'
resolver._load_strategy('SampleStrategy', config=default_conf, extra_dir=extra_dir)
assert log_has_re(r'Path .*' + r'some.*path.*' + r'.* does not exist', caplog)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_not_found_strategy(default_conf):
strategy = StrategyResolver(default_conf)
with pytest.raises(OperationalException,
match=r"Impossible to load Strategy 'NotFoundStrategy'. "
r"This class does not exist or contains Python code errors."):
strategy._load_strategy(strategy_name='NotFoundStrategy', config=default_conf)
def test_strategy(result, default_conf):
default_conf.update({'strategy': 'DefaultStrategy'})
resolver = StrategyResolver(default_conf)
metadata = {'pair': 'ETH/BTC'}
assert resolver.strategy.minimal_roi[0] == 0.04
assert default_conf["minimal_roi"]['0'] == 0.04
assert resolver.strategy.stoploss == -0.10
assert default_conf['stoploss'] == -0.10
assert resolver.strategy.ticker_interval == '5m'
assert default_conf['ticker_interval'] == '5m'
df_indicators = resolver.strategy.advise_indicators(result, metadata=metadata)
assert 'adx' in df_indicators
dataframe = resolver.strategy.advise_buy(df_indicators, metadata=metadata)
assert 'buy' in dataframe.columns
dataframe = resolver.strategy.advise_sell(df_indicators, metadata=metadata)
assert 'sell' in dataframe.columns
def test_strategy_override_minimal_roi(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
'minimal_roi': {
"0": 0.5
}
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.minimal_roi[0] == 0.5
assert log_has("Override strategy 'minimal_roi' with value in config file: {'0': 0.5}.", caplog)
def test_strategy_override_stoploss(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
'stoploss': -0.5
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.stoploss == -0.5
assert log_has("Override strategy 'stoploss' with value in config file: -0.5.", caplog)
def test_strategy_override_trailing_stop(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
'trailing_stop': True
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.trailing_stop
assert isinstance(resolver.strategy.trailing_stop, bool)
assert log_has("Override strategy 'trailing_stop' with value in config file: True.", caplog)
def test_strategy_override_trailing_stop_positive(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
'trailing_stop_positive': -0.1,
'trailing_stop_positive_offset': -0.2
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.trailing_stop_positive == -0.1
assert log_has("Override strategy 'trailing_stop_positive' with value in config file: -0.1.",
caplog)
assert resolver.strategy.trailing_stop_positive_offset == -0.2
assert log_has("Override strategy 'trailing_stop_positive' with value in config file: -0.1.",
caplog)
def test_strategy_override_ticker_interval(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
'ticker_interval': 60,
'stake_currency': 'ETH'
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.ticker_interval == 60
assert resolver.strategy.stake_currency == 'ETH'
assert log_has("Override strategy 'ticker_interval' with value in config file: 60.",
caplog)
def test_strategy_override_process_only_new_candles(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
'process_only_new_candles': True
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.process_only_new_candles
assert log_has("Override strategy 'process_only_new_candles' with value in config file: True.",
caplog)
def test_strategy_override_order_types(caplog, default_conf):
caplog.set_level(logging.INFO)
order_types = {
'buy': 'market',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': True,
}
default_conf.update({
'strategy': 'DefaultStrategy',
'order_types': order_types
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.order_types
for method in ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']:
assert resolver.strategy.order_types[method] == order_types[method]
assert log_has("Override strategy 'order_types' with value in config file:"
" {'buy': 'market', 'sell': 'limit', 'stoploss': 'limit',"
" 'stoploss_on_exchange': True}.", caplog)
default_conf.update({
'strategy': 'DefaultStrategy',
'order_types': {'buy': 'market'}
})
# Raise error for invalid configuration
with pytest.raises(ImportError,
match=r"Impossible to load Strategy 'DefaultStrategy'. "
r"Order-types mapping is incomplete."):
StrategyResolver(default_conf)
def test_strategy_override_order_tif(caplog, default_conf):
caplog.set_level(logging.INFO)
order_time_in_force = {
'buy': 'fok',
'sell': 'gtc',
}
default_conf.update({
'strategy': 'DefaultStrategy',
'order_time_in_force': order_time_in_force
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.order_time_in_force
for method in ['buy', 'sell']:
assert resolver.strategy.order_time_in_force[method] == order_time_in_force[method]
assert log_has("Override strategy 'order_time_in_force' with value in config file:"
" {'buy': 'fok', 'sell': 'gtc'}.", caplog)
default_conf.update({
'strategy': 'DefaultStrategy',
'order_time_in_force': {'buy': 'fok'}
})
# Raise error for invalid configuration
with pytest.raises(ImportError,
match=r"Impossible to load Strategy 'DefaultStrategy'. "
r"Order-time-in-force mapping is incomplete."):
StrategyResolver(default_conf)
def test_strategy_override_use_sell_signal(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
})
resolver = StrategyResolver(default_conf)
assert not resolver.strategy.use_sell_signal
assert isinstance(resolver.strategy.use_sell_signal, bool)
# must be inserted to configuration
assert 'use_sell_signal' in default_conf['experimental']
assert not default_conf['experimental']['use_sell_signal']
default_conf.update({
'strategy': 'DefaultStrategy',
'experimental': {
'use_sell_signal': True,
},
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.use_sell_signal
assert isinstance(resolver.strategy.use_sell_signal, bool)
assert log_has("Override strategy 'use_sell_signal' with value in config file: True.", caplog)
def test_strategy_override_use_sell_profit_only(caplog, default_conf):
caplog.set_level(logging.INFO)
default_conf.update({
'strategy': 'DefaultStrategy',
})
resolver = StrategyResolver(default_conf)
assert not resolver.strategy.sell_profit_only
assert isinstance(resolver.strategy.sell_profit_only, bool)
# must be inserted to configuration
assert 'sell_profit_only' in default_conf['experimental']
assert not default_conf['experimental']['sell_profit_only']
default_conf.update({
'strategy': 'DefaultStrategy',
'experimental': {
'sell_profit_only': True,
},
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.sell_profit_only
assert isinstance(resolver.strategy.sell_profit_only, bool)
assert log_has("Override strategy 'sell_profit_only' with value in config file: True.", caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_deprecate_populate_indicators(result, default_conf):
default_location = path.join(path.dirname(path.realpath(__file__)))
default_conf.update({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
resolver = StrategyResolver(default_conf)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
indicators = resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_buy(indicators, {'pair': 'ETH/BTC'})
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_sell(indicators, {'pair': 'ETH_BTC'})
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_call_deprecated_function(result, monkeypatch, default_conf):
default_location = path.join(path.dirname(path.realpath(__file__)))
default_conf.update({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
resolver = StrategyResolver(default_conf)
metadata = {'pair': 'ETH/BTC'}
# Make sure we are using a legacy function
assert resolver.strategy._populate_fun_len == 2
assert resolver.strategy._buy_fun_len == 2
assert resolver.strategy._sell_fun_len == 2
assert resolver.strategy.INTERFACE_VERSION == 1
indicator_df = resolver.strategy.advise_indicators(result, metadata=metadata)
assert isinstance(indicator_df, DataFrame)
assert 'adx' in indicator_df.columns
buydf = resolver.strategy.advise_buy(result, metadata=metadata)
assert isinstance(buydf, DataFrame)
assert 'buy' in buydf.columns
selldf = resolver.strategy.advise_sell(result, metadata=metadata)
assert isinstance(selldf, DataFrame)
assert 'sell' in selldf
def test_strategy_interface_versioning(result, monkeypatch, default_conf):
default_conf.update({'strategy': 'DefaultStrategy'})
resolver = StrategyResolver(default_conf)
metadata = {'pair': 'ETH/BTC'}
# Make sure we are using a legacy function
assert resolver.strategy._populate_fun_len == 3
assert resolver.strategy._buy_fun_len == 3
assert resolver.strategy._sell_fun_len == 3
assert resolver.strategy.INTERFACE_VERSION == 2
indicator_df = resolver.strategy.advise_indicators(result, metadata=metadata)
assert isinstance(indicator_df, DataFrame)
assert 'adx' in indicator_df.columns
buydf = resolver.strategy.advise_buy(result, metadata=metadata)
assert isinstance(buydf, DataFrame)
assert 'buy' in buydf.columns
selldf = resolver.strategy.advise_sell(result, metadata=metadata)
assert isinstance(selldf, DataFrame)
assert 'sell' in selldf