Move tests out of freqtrade module
This commit is contained in:
51
tests/optimize/__init__.py
Normal file
51
tests/optimize/__init__.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from typing import NamedTuple, List
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.strategy.interface import SellType
|
||||
|
||||
ticker_start_time = arrow.get(2018, 10, 3)
|
||||
tests_ticker_interval = '1h'
|
||||
|
||||
|
||||
class BTrade(NamedTuple):
|
||||
"""
|
||||
Minimalistic Trade result used for functional backtesting
|
||||
"""
|
||||
sell_reason: SellType
|
||||
open_tick: int
|
||||
close_tick: int
|
||||
|
||||
|
||||
class BTContainer(NamedTuple):
|
||||
"""
|
||||
Minimal BacktestContainer defining Backtest inputs and results.
|
||||
"""
|
||||
data: List[float]
|
||||
stop_loss: float
|
||||
roi: float
|
||||
trades: List[BTrade]
|
||||
profit_perc: float
|
||||
trailing_stop: bool = False
|
||||
trailing_only_offset_is_reached: bool = False
|
||||
trailing_stop_positive: float = None
|
||||
trailing_stop_positive_offset: float = 0.0
|
||||
use_sell_signal: bool = False
|
||||
|
||||
|
||||
def _get_frame_time_from_offset(offset):
|
||||
return ticker_start_time.shift(minutes=(offset * timeframe_to_minutes(tests_ticker_interval))
|
||||
).datetime
|
||||
|
||||
|
||||
def _build_backtest_dataframe(ticker_with_signals):
|
||||
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
|
||||
|
||||
frame = DataFrame.from_records(ticker_with_signals, columns=columns)
|
||||
frame['date'] = frame['date'].apply(_get_frame_time_from_offset)
|
||||
# Ensure floats are in place
|
||||
for column in ['open', 'high', 'low', 'close', 'volume']:
|
||||
frame[column] = frame[column].astype('float64')
|
||||
return frame
|
322
tests/optimize/test_backtest_detail.py
Normal file
322
tests/optimize/test_backtest_detail.py
Normal file
@@ -0,0 +1,322 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, C0330, unused-argument
|
||||
import logging
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.history import get_timeframe
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.tests.conftest import patch_exchange
|
||||
from freqtrade.tests.optimize import (BTContainer, BTrade,
|
||||
_build_backtest_dataframe,
|
||||
_get_frame_time_from_offset,
|
||||
tests_ticker_interval)
|
||||
|
||||
# Test 0: Sell with signal sell in candle 3
|
||||
# Test with Stop-loss at 1%
|
||||
tc0 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4986, 4600, 6172, 0, 0], # exit with stoploss hit
|
||||
[3, 5010, 5000, 4980, 5010, 6172, 0, 1],
|
||||
[4, 5010, 4987, 4977, 4995, 6172, 0, 0],
|
||||
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.01, roi=1, profit_perc=0.002, use_sell_signal=True,
|
||||
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=4)]
|
||||
)
|
||||
|
||||
# Test 1: Stop-Loss Triggered 1% loss
|
||||
# Test with Stop-loss at 1%
|
||||
tc1 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4600, 4600, 6172, 0, 0], # exit with stoploss hit
|
||||
[3, 4975, 5000, 4980, 4977, 6172, 0, 0],
|
||||
[4, 4977, 4987, 4977, 4995, 6172, 0, 0],
|
||||
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.01, roi=1, profit_perc=-0.01,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
|
||||
)
|
||||
|
||||
|
||||
# Test 2: Minus 4% Low, minus 1% close
|
||||
# Test with Stop-Loss at 3%
|
||||
tc2 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4962, 4975, 6172, 0, 0],
|
||||
[3, 4975, 5000, 4800, 4962, 6172, 0, 0], # exit with stoploss hit
|
||||
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.03, roi=1, profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=3)]
|
||||
)
|
||||
|
||||
|
||||
# Test 3: Multiple trades.
|
||||
# Candle drops 4%, Recovers 1%.
|
||||
# Entry Criteria Met
|
||||
# Candle drops 20%
|
||||
# Trade-A: Stop-Loss Triggered 2% Loss
|
||||
# Trade-B: Stop-Loss Triggered 2% Loss
|
||||
tc3 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4800, 4975, 6172, 0, 0], # exit with stoploss hit
|
||||
[3, 4975, 5000, 4950, 4962, 6172, 1, 0],
|
||||
[4, 4975, 5000, 4950, 4962, 6172, 0, 0], # enter trade 2 (signal on last candle)
|
||||
[5, 4962, 4987, 4000, 4000, 6172, 0, 0], # exit with stoploss hit
|
||||
[6, 4950, 4975, 4975, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.02, roi=1, profit_perc=-0.04,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2),
|
||||
BTrade(sell_reason=SellType.STOP_LOSS, open_tick=4, close_tick=5)]
|
||||
)
|
||||
|
||||
# Test 4: Minus 3% / recovery +15%
|
||||
# Candle Data for test 3 – Candle drops 3% Closed 15% up
|
||||
# Test with Stop-loss at 2% ROI 6%
|
||||
# Stop-Loss Triggered 2% Loss
|
||||
tc4 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5750, 4850, 5750, 6172, 0, 0], # Exit with stoploss hit
|
||||
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
|
||||
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.02, roi=0.06, profit_perc=-0.02,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
|
||||
)
|
||||
|
||||
# Test 5: Drops 0.5% Closes +20%, ROI triggers 3% Gain
|
||||
# stop-loss: 1%, ROI: 3%
|
||||
tc5 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4980, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4980, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5025, 4975, 4987, 6172, 0, 0],
|
||||
[3, 4975, 6000, 4975, 6000, 6172, 0, 0], # ROI
|
||||
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.01, roi=0.03, profit_perc=0.03,
|
||||
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
|
||||
)
|
||||
|
||||
# Test 6: Drops 3% / Recovers 6% Positive / Closes 1% positve, Stop-Loss triggers 2% Loss
|
||||
# stop-loss: 2% ROI: 5%
|
||||
tc6 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5300, 4850, 5050, 6172, 0, 0], # Exit with stoploss
|
||||
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
|
||||
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.02, roi=0.05, profit_perc=-0.02,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
|
||||
)
|
||||
|
||||
# Test 7: 6% Positive / 1% Negative / Close 1% Positve, ROI Triggers 3% Gain
|
||||
# stop-loss: 2% ROI: 3%
|
||||
tc7 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
[2, 4987, 5300, 4950, 5050, 6172, 0, 0],
|
||||
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
|
||||
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.02, roi=0.03, profit_perc=0.03,
|
||||
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=2)]
|
||||
)
|
||||
|
||||
|
||||
# Test 8: trailing_stop should raise so candle 3 causes a stoploss.
|
||||
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted in candle 2
|
||||
tc8 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5050, 4950, 5000, 6172, 0, 0],
|
||||
[2, 5000, 5250, 4750, 4850, 6172, 0, 0],
|
||||
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.10, roi=0.10, profit_perc=-0.055, trailing_stop=True,
|
||||
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
|
||||
)
|
||||
|
||||
|
||||
# Test 9: trailing_stop should raise - high and low in same candle.
|
||||
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted in candle 3
|
||||
tc9 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5050, 4950, 5000, 6172, 0, 0],
|
||||
[2, 5000, 5050, 4950, 5000, 6172, 0, 0],
|
||||
[3, 5000, 5200, 4550, 4850, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.10, roi=0.10, profit_perc=-0.064, trailing_stop=True,
|
||||
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
|
||||
)
|
||||
|
||||
# Test 10: trailing_stop should raise so candle 3 causes a stoploss
|
||||
# without applying trailing_stop_positive since stoploss_offset is at 10%.
|
||||
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2
|
||||
tc10 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
|
||||
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
|
||||
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.10, roi=0.10, profit_perc=-0.1, trailing_stop=True,
|
||||
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.10,
|
||||
trailing_stop_positive=0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=4)]
|
||||
)
|
||||
|
||||
# Test 11: trailing_stop should raise so candle 3 causes a stoploss
|
||||
# applying a positive trailing stop of 3% since stop_positive_offset is reached.
|
||||
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2
|
||||
tc11 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
|
||||
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
|
||||
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.10, roi=0.10, profit_perc=0.019, trailing_stop=True,
|
||||
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.05,
|
||||
trailing_stop_positive=0.03,
|
||||
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
|
||||
)
|
||||
|
||||
# Test 12: trailing_stop should raise in candle 2 and cause a stoploss in the same candle
|
||||
# applying a positive trailing stop of 3% since stop_positive_offset is reached.
|
||||
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2
|
||||
tc12 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
|
||||
[2, 5100, 5251, 4650, 5100, 6172, 0, 0],
|
||||
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.10, roi=0.10, profit_perc=0.019, trailing_stop=True,
|
||||
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.05,
|
||||
trailing_stop_positive=0.03,
|
||||
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=2)]
|
||||
)
|
||||
|
||||
# Test 13: Buy and sell ROI on same candle
|
||||
# stop-loss: 10% (should not apply), ROI: 1%
|
||||
tc13 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
|
||||
[2, 5100, 5251, 4850, 5100, 6172, 0, 0],
|
||||
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4850, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.10, roi=0.01, profit_perc=0.01,
|
||||
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
# Test 14 - Buy and Stoploss on same candle
|
||||
# stop-loss: 5%, ROI: 10% (should not apply)
|
||||
tc14 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5100, 4600, 5100, 6172, 0, 0],
|
||||
[2, 5100, 5251, 4850, 5100, 6172, 0, 0],
|
||||
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.05, roi=0.10, profit_perc=-0.05,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
|
||||
# Test 15 - Buy and ROI on same candle, followed by buy and Stoploss on next candle
|
||||
# stop-loss: 5%, ROI: 10% (should not apply)
|
||||
tc15 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
|
||||
[1, 5000, 5100, 4900, 5100, 6172, 1, 0],
|
||||
[2, 5100, 5251, 4650, 5100, 6172, 0, 0],
|
||||
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
|
||||
stop_loss=-0.05, roi=0.01, profit_perc=-0.04,
|
||||
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1),
|
||||
BTrade(sell_reason=SellType.STOP_LOSS, open_tick=2, close_tick=2)]
|
||||
)
|
||||
|
||||
TESTS = [
|
||||
tc0,
|
||||
tc1,
|
||||
tc2,
|
||||
tc3,
|
||||
tc4,
|
||||
tc5,
|
||||
tc6,
|
||||
tc7,
|
||||
tc8,
|
||||
tc9,
|
||||
tc10,
|
||||
tc11,
|
||||
tc12,
|
||||
tc13,
|
||||
tc14,
|
||||
tc15,
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("data", TESTS)
|
||||
def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
|
||||
"""
|
||||
run functional tests
|
||||
"""
|
||||
default_conf["stoploss"] = data.stop_loss
|
||||
default_conf["minimal_roi"] = {"0": data.roi}
|
||||
default_conf["ticker_interval"] = tests_ticker_interval
|
||||
default_conf["trailing_stop"] = data.trailing_stop
|
||||
default_conf["trailing_only_offset_is_reached"] = data.trailing_only_offset_is_reached
|
||||
# Only add this to configuration If it's necessary
|
||||
if data.trailing_stop_positive:
|
||||
default_conf["trailing_stop_positive"] = data.trailing_stop_positive
|
||||
default_conf["trailing_stop_positive_offset"] = data.trailing_stop_positive_offset
|
||||
default_conf["experimental"] = {"use_sell_signal": data.use_sell_signal}
|
||||
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_fee", MagicMock(return_value=0.0))
|
||||
patch_exchange(mocker)
|
||||
frame = _build_backtest_dataframe(data.data)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = lambda a, m: frame
|
||||
backtesting.advise_sell = lambda a, m: frame
|
||||
caplog.set_level(logging.DEBUG)
|
||||
|
||||
pair = "UNITTEST/BTC"
|
||||
# Dummy data as we mock the analyze functions
|
||||
data_processed = {pair: DataFrame()}
|
||||
min_date, max_date = get_timeframe({pair: frame})
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': data_processed,
|
||||
'max_open_trades': 10,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
)
|
||||
print(results.T)
|
||||
|
||||
assert len(results) == len(data.trades)
|
||||
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
|
||||
|
||||
for c, trade in enumerate(data.trades):
|
||||
res = results.iloc[c]
|
||||
assert res.sell_reason == trade.sell_reason
|
||||
assert res.open_time == _get_frame_time_from_offset(trade.open_tick)
|
||||
assert res.close_time == _get_frame_time_from_offset(trade.close_tick)
|
906
tests/optimize/test_backtesting.py
Normal file
906
tests/optimize/test_backtesting.py
Normal file
@@ -0,0 +1,906 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||
|
||||
import math
|
||||
import random
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
|
||||
from freqtrade import DependencyException, OperationalException, constants
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import evaluate_result_multi
|
||||
from freqtrade.data.converter import parse_ticker_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.data.history import get_timeframe
|
||||
from freqtrade.optimize import setup_configuration, start_backtesting
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.strategy.default_strategy import DefaultStrategy
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.tests.conftest import (get_args, log_has, log_has_re,
|
||||
patch_exchange,
|
||||
patched_configuration_load_config_file)
|
||||
|
||||
|
||||
def trim_dictlist(dict_list, num):
|
||||
new = {}
|
||||
for pair, pair_data in dict_list.items():
|
||||
new[pair] = pair_data[num:].reset_index()
|
||||
return new
|
||||
|
||||
|
||||
def load_data_test(what, testdatadir):
|
||||
timerange = TimeRange(None, 'line', 0, -101)
|
||||
pair = history.load_tickerdata_file(testdatadir, ticker_interval='1m',
|
||||
pair='UNITTEST/BTC', timerange=timerange)
|
||||
datalen = len(pair)
|
||||
|
||||
base = 0.001
|
||||
if what == 'raise':
|
||||
data = [
|
||||
[
|
||||
pair[x][0], # Keep old dates
|
||||
x * base, # But replace O,H,L,C
|
||||
x * base + 0.0001,
|
||||
x * base - 0.0001,
|
||||
x * base,
|
||||
pair[x][5], # Keep old volume
|
||||
] for x in range(0, datalen)
|
||||
]
|
||||
if what == 'lower':
|
||||
data = [
|
||||
[
|
||||
pair[x][0], # Keep old dates
|
||||
1 - x * base, # But replace O,H,L,C
|
||||
1 - x * base + 0.0001,
|
||||
1 - x * base - 0.0001,
|
||||
1 - x * base,
|
||||
pair[x][5] # Keep old volume
|
||||
] for x in range(0, datalen)
|
||||
]
|
||||
if what == 'sine':
|
||||
hz = 0.1 # frequency
|
||||
data = [
|
||||
[
|
||||
pair[x][0], # Keep old dates
|
||||
math.sin(x * hz) / 1000 + base, # But replace O,H,L,C
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
pair[x][5] # Keep old volume
|
||||
] for x in range(0, datalen)
|
||||
]
|
||||
return {'UNITTEST/BTC': parse_ticker_dataframe(data, '1m', pair="UNITTEST/BTC",
|
||||
fill_missing=True)}
|
||||
|
||||
|
||||
def simple_backtest(config, contour, num_results, mocker, testdatadir) -> None:
|
||||
patch_exchange(mocker)
|
||||
config['ticker_interval'] = '1m'
|
||||
backtesting = Backtesting(config)
|
||||
|
||||
data = load_data_test(contour, testdatadir)
|
||||
processed = backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
min_date, max_date = get_timeframe(processed)
|
||||
assert isinstance(processed, dict)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': config['stake_amount'],
|
||||
'processed': processed,
|
||||
'max_open_trades': 1,
|
||||
'position_stacking': False,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
)
|
||||
# results :: <class 'pandas.core.frame.DataFrame'>
|
||||
assert len(results) == num_results
|
||||
|
||||
|
||||
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
|
||||
timerange=None, exchange=None, live=False):
|
||||
tickerdata = history.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange)
|
||||
pairdata = {'UNITTEST/BTC': parse_ticker_dataframe(tickerdata, '1m', pair="UNITTEST/BTC",
|
||||
fill_missing=True)}
|
||||
return pairdata
|
||||
|
||||
|
||||
# use for mock ccxt.fetch_ohlvc'
|
||||
def _load_pair_as_ticks(pair, tickfreq):
|
||||
ticks = history.load_tickerdata_file(None, ticker_interval=tickfreq, pair=pair)
|
||||
ticks = ticks[-201:]
|
||||
return ticks
|
||||
|
||||
|
||||
# FIX: fixturize this?
|
||||
def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC', record=None):
|
||||
data = history.load_data(datadir=datadir, ticker_interval='1m', pairs=[pair])
|
||||
data = trim_dictlist(data, -201)
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(conf)
|
||||
processed = backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
min_date, max_date = get_timeframe(processed)
|
||||
return {
|
||||
'stake_amount': conf['stake_amount'],
|
||||
'processed': processed,
|
||||
'max_open_trades': 10,
|
||||
'position_stacking': False,
|
||||
'record': record,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
|
||||
|
||||
def _trend(signals, buy_value, sell_value):
|
||||
n = len(signals['low'])
|
||||
buy = np.zeros(n)
|
||||
sell = np.zeros(n)
|
||||
for i in range(0, len(signals['buy'])):
|
||||
if random.random() > 0.5: # Both buy and sell signals at same timeframe
|
||||
buy[i] = buy_value
|
||||
sell[i] = sell_value
|
||||
signals['buy'] = buy
|
||||
signals['sell'] = sell
|
||||
return signals
|
||||
|
||||
|
||||
def _trend_alternate(dataframe=None, metadata=None):
|
||||
signals = dataframe
|
||||
low = signals['low']
|
||||
n = len(low)
|
||||
buy = np.zeros(n)
|
||||
sell = np.zeros(n)
|
||||
for i in range(0, len(buy)):
|
||||
if i % 2 == 0:
|
||||
buy[i] = 1
|
||||
else:
|
||||
sell[i] = 1
|
||||
signals['buy'] = buy
|
||||
signals['sell'] = sell
|
||||
return dataframe
|
||||
|
||||
|
||||
# Unit tests
|
||||
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'backtesting'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args), RunMode.BACKTEST)
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
|
||||
assert 'ticker_interval' in config
|
||||
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
|
||||
|
||||
assert 'position_stacking' not in config
|
||||
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
|
||||
|
||||
assert 'refresh_pairs' not in config
|
||||
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
|
||||
|
||||
assert 'timerange' not in config
|
||||
assert 'export' not in config
|
||||
assert 'runmode' in config
|
||||
assert config['runmode'] == RunMode.BACKTEST
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:DEPRECATED")
|
||||
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
mocker.patch(
|
||||
'freqtrade.configuration.configuration.create_datadir',
|
||||
lambda c, x: x
|
||||
)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'--datadir', '/foo/bar',
|
||||
'backtesting',
|
||||
'--ticker-interval', '1m',
|
||||
'--enable-position-stacking',
|
||||
'--disable-max-market-positions',
|
||||
'--refresh-pairs-cached',
|
||||
'--timerange', ':100',
|
||||
'--export', '/bar/foo',
|
||||
'--export-filename', 'foo_bar.json'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args), RunMode.BACKTEST)
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert config['runmode'] == RunMode.BACKTEST
|
||||
|
||||
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
|
||||
assert 'ticker_interval' in config
|
||||
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
|
||||
caplog)
|
||||
|
||||
assert 'position_stacking' in config
|
||||
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
|
||||
|
||||
assert 'use_max_market_positions' in config
|
||||
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
|
||||
assert log_has('max_open_trades set to unlimited ...', caplog)
|
||||
|
||||
assert 'refresh_pairs' in config
|
||||
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
|
||||
|
||||
assert 'timerange' in config
|
||||
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
|
||||
|
||||
assert 'export' in config
|
||||
assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog)
|
||||
assert 'exportfilename' in config
|
||||
assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog)
|
||||
|
||||
|
||||
def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
|
||||
default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
|
||||
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'backtesting'
|
||||
]
|
||||
|
||||
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
|
||||
setup_configuration(get_args(args), RunMode.BACKTEST)
|
||||
|
||||
|
||||
def test_start(mocker, fee, default_conf, caplog) -> None:
|
||||
start_mock = MagicMock()
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'backtesting'
|
||||
]
|
||||
args = get_args(args)
|
||||
start_backtesting(args)
|
||||
assert log_has('Starting freqtrade in Backtesting mode', caplog)
|
||||
assert start_mock.call_count == 1
|
||||
|
||||
|
||||
ORDER_TYPES = [
|
||||
{
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit',
|
||||
'stoploss_on_exchange': False
|
||||
},
|
||||
{
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit',
|
||||
'stoploss_on_exchange': True
|
||||
}]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("order_types", ORDER_TYPES)
|
||||
def test_backtesting_init(mocker, default_conf, order_types) -> None:
|
||||
"""
|
||||
Check that stoploss_on_exchange is set to False while backtesting
|
||||
since backtesting assumes a perfect stoploss anyway.
|
||||
"""
|
||||
default_conf["order_types"] = order_types
|
||||
patch_exchange(mocker)
|
||||
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
|
||||
backtesting = Backtesting(default_conf)
|
||||
assert backtesting.config == default_conf
|
||||
assert backtesting.ticker_interval == '5m'
|
||||
assert callable(backtesting.strategy.tickerdata_to_dataframe)
|
||||
assert callable(backtesting.advise_buy)
|
||||
assert callable(backtesting.advise_sell)
|
||||
assert isinstance(backtesting.strategy.dp, DataProvider)
|
||||
get_fee.assert_called()
|
||||
assert backtesting.fee == 0.5
|
||||
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
|
||||
|
||||
|
||||
def test_backtesting_init_no_ticker_interval(mocker, default_conf, caplog) -> None:
|
||||
"""
|
||||
Check that stoploss_on_exchange is set to False while backtesting
|
||||
since backtesting assumes a perfect stoploss anyway.
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
del default_conf['ticker_interval']
|
||||
default_conf['strategy_list'] = ['DefaultStrategy',
|
||||
'SampleStrategy']
|
||||
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
|
||||
with pytest.raises(OperationalException):
|
||||
Backtesting(default_conf)
|
||||
log_has("Ticker-interval needs to be set in either configuration "
|
||||
"or as cli argument `--ticker-interval 5m`", caplog)
|
||||
|
||||
|
||||
def test_tickerdata_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
|
||||
patch_exchange(mocker)
|
||||
timerange = TimeRange(None, 'line', 0, -100)
|
||||
tick = history.load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m', timerange=timerange)
|
||||
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
|
||||
fill_missing=True)}
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
data = backtesting.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
assert len(data['UNITTEST/BTC']) == 102
|
||||
|
||||
# Load strategy to compare the result between Backtesting function and strategy are the same
|
||||
strategy = DefaultStrategy(default_conf)
|
||||
data2 = strategy.tickerdata_to_dataframe(tickerlist)
|
||||
assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC'])
|
||||
|
||||
|
||||
def test_generate_text_table(default_conf, mocker):
|
||||
patch_exchange(mocker)
|
||||
default_conf['max_open_trades'] = 2
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2],
|
||||
'profit_abs': [0.2, 0.4],
|
||||
'trade_duration': [10, 30],
|
||||
'profit': [2, 0],
|
||||
'loss': [0, 0]
|
||||
}
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| pair | buy count | avg profit % | cum profit % | '
|
||||
'tot profit BTC | tot profit % | avg duration | profit | loss |\n'
|
||||
'|:--------|------------:|---------------:|---------------:|'
|
||||
'-----------------:|---------------:|:---------------|---------:|-------:|\n'
|
||||
'| ETH/BTC | 2 | 15.00 | 30.00 | '
|
||||
'0.60000000 | 15.00 | 0:20:00 | 2 | 0 |\n'
|
||||
'| TOTAL | 2 | 15.00 | 30.00 | '
|
||||
'0.60000000 | 15.00 | 0:20:00 | 2 | 0 |'
|
||||
)
|
||||
assert backtesting._generate_text_table(data={'ETH/BTC': {}}, results=results) == result_str
|
||||
|
||||
|
||||
def test_generate_text_table_sell_reason(default_conf, mocker):
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2, 0.3],
|
||||
'profit_abs': [0.2, 0.4, 0.5],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'profit': [2, 0, 0],
|
||||
'loss': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| Sell Reason | Count |\n'
|
||||
'|:--------------|--------:|\n'
|
||||
'| roi | 2 |\n'
|
||||
'| stop_loss | 1 |'
|
||||
)
|
||||
assert backtesting._generate_text_table_sell_reason(
|
||||
data={'ETH/BTC': {}}, results=results) == result_str
|
||||
|
||||
|
||||
def test_generate_text_table_strategyn(default_conf, mocker):
|
||||
"""
|
||||
Test Backtesting.generate_text_table_sell_reason() method
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
default_conf['max_open_trades'] = 2
|
||||
backtesting = Backtesting(default_conf)
|
||||
results = {}
|
||||
results['ETH/BTC'] = pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2, 0.3],
|
||||
'profit_abs': [0.2, 0.4, 0.5],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'profit': [2, 0, 0],
|
||||
'loss': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
results['LTC/BTC'] = pd.DataFrame(
|
||||
{
|
||||
'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'],
|
||||
'profit_percent': [0.4, 0.2, 0.3],
|
||||
'profit_abs': [0.4, 0.4, 0.5],
|
||||
'trade_duration': [15, 30, 15],
|
||||
'profit': [4, 1, 0],
|
||||
'loss': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| Strategy | buy count | avg profit % | cum profit % '
|
||||
'| tot profit BTC | tot profit % | avg duration | profit | loss |\n'
|
||||
'|:-----------|------------:|---------------:|---------------:'
|
||||
'|-----------------:|---------------:|:---------------|---------:|-------:|\n'
|
||||
'| ETH/BTC | 3 | 20.00 | 60.00 '
|
||||
'| 1.10000000 | 30.00 | 0:17:00 | 3 | 0 |\n'
|
||||
'| LTC/BTC | 3 | 30.00 | 90.00 '
|
||||
'| 1.30000000 | 45.00 | 0:20:00 | 3 | 0 |'
|
||||
)
|
||||
print(backtesting._generate_text_table_strategy(all_results=results))
|
||||
assert backtesting._generate_text_table_strategy(all_results=results) == result_str
|
||||
|
||||
|
||||
def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None:
|
||||
def get_timeframe(input1):
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.data.history.load_data', mocked_load_data)
|
||||
mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe)
|
||||
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
)
|
||||
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
default_conf['ticker_interval'] = '1m'
|
||||
default_conf['datadir'] = testdatadir
|
||||
default_conf['export'] = None
|
||||
default_conf['timerange'] = '-100'
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.start()
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = [
|
||||
'Using stake_currency: BTC ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
|
||||
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
|
||||
]
|
||||
for line in exists:
|
||||
assert log_has(line, caplog)
|
||||
|
||||
|
||||
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
|
||||
def get_timeframe(input1):
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.data.history.load_data', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe)
|
||||
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
)
|
||||
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
default_conf['ticker_interval'] = "1m"
|
||||
default_conf['datadir'] = testdatadir
|
||||
default_conf['export'] = None
|
||||
default_conf['timerange'] = '20180101-20180102'
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.start()
|
||||
# check the logs, that will contain the backtest result
|
||||
|
||||
assert log_has('No data found. Terminating.', caplog)
|
||||
|
||||
|
||||
def test_backtest(default_conf, fee, mocker, testdatadir) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
pair = 'UNITTEST/BTC'
|
||||
timerange = TimeRange(None, 'line', 0, -201)
|
||||
data = history.load_data(datadir=testdatadir, ticker_interval='5m', pairs=['UNITTEST/BTC'],
|
||||
timerange=timerange)
|
||||
data_processed = backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
min_date, max_date = get_timeframe(data_processed)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': data_processed,
|
||||
'max_open_trades': 10,
|
||||
'position_stacking': False,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
)
|
||||
assert not results.empty
|
||||
assert len(results) == 2
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{'pair': [pair, pair],
|
||||
'profit_percent': [0.0, 0.0],
|
||||
'profit_abs': [0.0, 0.0],
|
||||
'open_time': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
|
||||
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
|
||||
),
|
||||
'close_time': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
|
||||
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
|
||||
'open_index': [78, 184],
|
||||
'close_index': [125, 192],
|
||||
'trade_duration': [235, 40],
|
||||
'open_at_end': [False, False],
|
||||
'open_rate': [0.104445, 0.10302485],
|
||||
'close_rate': [0.104969, 0.103541],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI]
|
||||
})
|
||||
pd.testing.assert_frame_equal(results, expected)
|
||||
data_pair = data_processed[pair]
|
||||
for _, t in results.iterrows():
|
||||
ln = data_pair.loc[data_pair["date"] == t["open_time"]]
|
||||
# Check open trade rate alignes to open rate
|
||||
assert ln is not None
|
||||
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
|
||||
# check close trade rate alignes to close rate or is between high and low
|
||||
ln = data_pair.loc[data_pair["date"] == t["close_time"]]
|
||||
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
|
||||
round(ln.iloc[0]["low"], 6) < round(
|
||||
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
|
||||
|
||||
|
||||
def test_backtest_1min_ticker_interval(default_conf, fee, mocker, testdatadir) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
# Run a backtesting for an exiting 1min ticker_interval
|
||||
timerange = TimeRange(None, 'line', 0, -200)
|
||||
data = history.load_data(datadir=testdatadir, ticker_interval='1m', pairs=['UNITTEST/BTC'],
|
||||
timerange=timerange)
|
||||
processed = backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
min_date, max_date = get_timeframe(processed)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': processed,
|
||||
'max_open_trades': 1,
|
||||
'position_stacking': False,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
)
|
||||
assert not results.empty
|
||||
assert len(results) == 1
|
||||
|
||||
|
||||
def test_processed(default_conf, mocker, testdatadir) -> None:
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
dict_of_tickerrows = load_data_test('raise', testdatadir)
|
||||
dataframes = backtesting.strategy.tickerdata_to_dataframe(dict_of_tickerrows)
|
||||
dataframe = dataframes['UNITTEST/BTC']
|
||||
cols = dataframe.columns
|
||||
# assert the dataframe got some of the indicator columns
|
||||
for col in ['close', 'high', 'low', 'open', 'date',
|
||||
'ema50', 'ao', 'macd', 'plus_dm']:
|
||||
assert col in cols
|
||||
|
||||
|
||||
def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir) -> None:
|
||||
# TODO: Evaluate usefullness of this, the patterns and buy-signls are unrealistic
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
tests = [['raise', 19], ['lower', 0], ['sine', 35]]
|
||||
# We need to enable sell-signal - otherwise it sells on ROI!!
|
||||
default_conf['experimental'] = {"use_sell_signal": True}
|
||||
|
||||
for [contour, numres] in tests:
|
||||
simple_backtest(default_conf, contour, numres, mocker, testdatadir)
|
||||
|
||||
|
||||
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
|
||||
# Override the default buy trend function in our default_strategy
|
||||
def fun(dataframe=None, pair=None):
|
||||
buy_value = 1
|
||||
sell_value = 1
|
||||
return _trend(dataframe, buy_value, sell_value)
|
||||
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
|
||||
def test_backtest_only_sell(mocker, default_conf, testdatadir):
|
||||
# Override the default buy trend function in our default_strategy
|
||||
def fun(dataframe=None, pair=None):
|
||||
buy_value = 0
|
||||
sell_value = 1
|
||||
return _trend(dataframe, buy_value, sell_value)
|
||||
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
|
||||
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch('freqtrade.optimize.backtesting.file_dump_json', MagicMock())
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf,
|
||||
pair='UNITTEST/BTC', datadir=testdatadir)
|
||||
# We need to enable sell-signal - otherwise it sells on ROI!!
|
||||
default_conf['experimental'] = {"use_sell_signal": True}
|
||||
default_conf['ticker_interval'] = '1m'
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = _trend_alternate # Override
|
||||
backtesting.advise_sell = _trend_alternate # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
backtesting._store_backtest_result("test_.json", results)
|
||||
# 200 candles in backtest data
|
||||
# won't buy on first (shifted by 1)
|
||||
# 100 buys signals
|
||||
assert len(results) == 100
|
||||
# One trade was force-closed at the end
|
||||
assert len(results.loc[results.open_at_end]) == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC'])
|
||||
@pytest.mark.parametrize("tres", [0, 20, 30])
|
||||
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
|
||||
|
||||
def _trend_alternate_hold(dataframe=None, metadata=None):
|
||||
"""
|
||||
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
|
||||
"""
|
||||
if metadata['pair'] in('ETH/BTC', 'LTC/BTC'):
|
||||
multi = 20
|
||||
else:
|
||||
multi = 18
|
||||
dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0)
|
||||
dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
|
||||
return dataframe
|
||||
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
|
||||
pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC']
|
||||
data = history.load_data(datadir=testdatadir, ticker_interval='5m', pairs=pairs)
|
||||
# Only use 500 lines to increase performance
|
||||
data = trim_dictlist(data, -500)
|
||||
|
||||
# Remove data for one pair from the beginning of the data
|
||||
data[pair] = data[pair][tres:].reset_index()
|
||||
# We need to enable sell-signal - otherwise it sells on ROI!!
|
||||
default_conf['experimental'] = {"use_sell_signal": True}
|
||||
default_conf['ticker_interval'] = '5m'
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = _trend_alternate_hold # Override
|
||||
backtesting.advise_sell = _trend_alternate_hold # Override
|
||||
|
||||
data_processed = backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
min_date, max_date = get_timeframe(data_processed)
|
||||
backtest_conf = {
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': data_processed,
|
||||
'max_open_trades': 3,
|
||||
'position_stacking': False,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
|
||||
# Make sure we have parallel trades
|
||||
assert len(evaluate_result_multi(results, '5min', 2)) > 0
|
||||
# make sure we don't have trades with more than configured max_open_trades
|
||||
assert len(evaluate_result_multi(results, '5min', 3)) == 0
|
||||
|
||||
backtest_conf = {
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': data_processed,
|
||||
'max_open_trades': 1,
|
||||
'position_stacking': False,
|
||||
'start_date': min_date,
|
||||
'end_date': max_date,
|
||||
}
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert len(evaluate_result_multi(results, '5min', 1)) == 0
|
||||
|
||||
|
||||
def test_backtest_record(default_conf, fee, mocker):
|
||||
names = []
|
||||
records = []
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.backtesting.file_dump_json',
|
||||
new=lambda n, r: (names.append(n), records.append(r))
|
||||
)
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
results = pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
|
||||
"UNITTEST/BTC", "UNITTEST/BTC"],
|
||||
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
|
||||
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
|
||||
"open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
|
||||
Arrow(2017, 11, 14, 21, 36, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 12, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 44, 00).datetime],
|
||||
"close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 10, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 43, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 58, 00).datetime],
|
||||
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
|
||||
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
|
||||
"open_index": [1, 119, 153, 185],
|
||||
"close_index": [118, 151, 184, 199],
|
||||
"trade_duration": [123, 34, 31, 14],
|
||||
"open_at_end": [False, False, False, True],
|
||||
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
|
||||
SellType.ROI, SellType.FORCE_SELL]
|
||||
})
|
||||
backtesting._store_backtest_result("backtest-result.json", results)
|
||||
assert len(results) == 4
|
||||
# Assert file_dump_json was only called once
|
||||
assert names == ['backtest-result.json']
|
||||
records = records[0]
|
||||
# Ensure records are of correct type
|
||||
assert len(records) == 4
|
||||
|
||||
# reset test to test with strategy name
|
||||
names = []
|
||||
records = []
|
||||
backtesting._store_backtest_result(Path("backtest-result.json"), results, "DefStrat")
|
||||
assert len(results) == 4
|
||||
# Assert file_dump_json was only called once
|
||||
assert names == [Path('backtest-result-DefStrat.json')]
|
||||
records = records[0]
|
||||
# Ensure records are of correct type
|
||||
assert len(records) == 4
|
||||
|
||||
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
|
||||
# Below follows just a typecheck of the schema/type of trade-records
|
||||
oix = None
|
||||
for (pair, profit, date_buy, date_sell, buy_index, dur,
|
||||
openr, closer, open_at_end, sell_reason) in records:
|
||||
assert pair == 'UNITTEST/BTC'
|
||||
assert isinstance(profit, float)
|
||||
# FIX: buy/sell should be converted to ints
|
||||
assert isinstance(date_buy, float)
|
||||
assert isinstance(date_sell, float)
|
||||
assert isinstance(openr, float)
|
||||
assert isinstance(closer, float)
|
||||
assert isinstance(open_at_end, bool)
|
||||
assert isinstance(sell_reason, str)
|
||||
isinstance(buy_index, pd._libs.tslib.Timestamp)
|
||||
if oix:
|
||||
assert buy_index > oix
|
||||
oix = buy_index
|
||||
assert dur > 0
|
||||
|
||||
|
||||
def test_backtest_start_timerange(default_conf, mocker, caplog):
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
|
||||
async def load_pairs(pair, timeframe, since):
|
||||
return _load_pair_as_ticks(pair, timeframe)
|
||||
|
||||
api_mock = MagicMock()
|
||||
api_mock.fetch_ohlcv = load_pairs
|
||||
|
||||
patch_exchange(mocker, api_mock)
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'--datadir', 'freqtrade/tests/testdata',
|
||||
'backtesting',
|
||||
'--ticker-interval', '1m',
|
||||
'--timerange', '-100',
|
||||
'--enable-position-stacking',
|
||||
'--disable-max-market-positions'
|
||||
]
|
||||
args = get_args(args)
|
||||
start_backtesting(args)
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = [
|
||||
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
|
||||
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
|
||||
'Parameter --timerange detected: -100 ...',
|
||||
'Using data directory: freqtrade/tests/testdata ...',
|
||||
'Using stake_currency: BTC ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
|
||||
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
|
||||
'Parameter --enable-position-stacking detected ...'
|
||||
]
|
||||
|
||||
for line in exists:
|
||||
assert log_has(line, caplog)
|
||||
|
||||
|
||||
def test_backtest_start_multi_strat(default_conf, mocker, caplog):
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
|
||||
async def load_pairs(pair, timeframe, since):
|
||||
return _load_pair_as_ticks(pair, timeframe)
|
||||
api_mock = MagicMock()
|
||||
api_mock.fetch_ohlcv = load_pairs
|
||||
|
||||
patch_exchange(mocker, api_mock)
|
||||
backtestmock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
|
||||
gen_table_mock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', gen_table_mock)
|
||||
gen_strattable_mock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table_strategy',
|
||||
gen_strattable_mock)
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--datadir', 'freqtrade/tests/testdata',
|
||||
'backtesting',
|
||||
'--ticker-interval', '1m',
|
||||
'--timerange', '-100',
|
||||
'--enable-position-stacking',
|
||||
'--disable-max-market-positions',
|
||||
'--strategy-list',
|
||||
'DefaultStrategy',
|
||||
'SampleStrategy',
|
||||
]
|
||||
args = get_args(args)
|
||||
start_backtesting(args)
|
||||
# 2 backtests, 4 tables
|
||||
assert backtestmock.call_count == 2
|
||||
assert gen_table_mock.call_count == 4
|
||||
assert gen_strattable_mock.call_count == 1
|
||||
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = [
|
||||
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
|
||||
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
|
||||
'Parameter --timerange detected: -100 ...',
|
||||
'Using data directory: freqtrade/tests/testdata ...',
|
||||
'Using stake_currency: BTC ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
|
||||
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
|
||||
'Parameter --enable-position-stacking detected ...',
|
||||
'Running backtesting for Strategy DefaultStrategy',
|
||||
'Running backtesting for Strategy SampleStrategy',
|
||||
]
|
||||
|
||||
for line in exists:
|
||||
assert log_has(line, caplog)
|
121
tests/optimize/test_edge_cli.py
Normal file
121
tests/optimize/test_edge_cli.py
Normal file
@@ -0,0 +1,121 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103, C0330
|
||||
# pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from freqtrade.edge import PairInfo
|
||||
from freqtrade.optimize import setup_configuration, start_edge
|
||||
from freqtrade.optimize.edge_cli import EdgeCli
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.tests.conftest import (get_args, log_has, log_has_re,
|
||||
patch_exchange,
|
||||
patched_configuration_load_config_file)
|
||||
|
||||
|
||||
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'edge'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args), RunMode.EDGE)
|
||||
assert config['runmode'] == RunMode.EDGE
|
||||
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
|
||||
assert 'ticker_interval' in config
|
||||
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
|
||||
|
||||
assert 'refresh_pairs' not in config
|
||||
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
|
||||
|
||||
assert 'timerange' not in config
|
||||
assert 'stoploss_range' not in config
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:DEPRECATED")
|
||||
def test_setup_edge_configuration_with_arguments(mocker, edge_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, edge_conf)
|
||||
mocker.patch(
|
||||
'freqtrade.configuration.configuration.create_datadir',
|
||||
lambda c, x: x
|
||||
)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'--datadir', '/foo/bar',
|
||||
'edge',
|
||||
'--ticker-interval', '1m',
|
||||
'--refresh-pairs-cached',
|
||||
'--timerange', ':100',
|
||||
'--stoplosses=-0.01,-0.10,-0.001'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args), RunMode.EDGE)
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert config['runmode'] == RunMode.EDGE
|
||||
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
|
||||
assert 'ticker_interval' in config
|
||||
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
|
||||
caplog)
|
||||
|
||||
assert 'refresh_pairs' in config
|
||||
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
|
||||
assert 'timerange' in config
|
||||
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
|
||||
|
||||
|
||||
def test_start(mocker, fee, edge_conf, caplog) -> None:
|
||||
start_mock = MagicMock()
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.edge_cli.EdgeCli.start', start_mock)
|
||||
patched_configuration_load_config_file(mocker, edge_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'edge'
|
||||
]
|
||||
args = get_args(args)
|
||||
start_edge(args)
|
||||
assert log_has('Starting freqtrade in Edge mode', caplog)
|
||||
assert start_mock.call_count == 1
|
||||
|
||||
|
||||
def test_edge_init(mocker, edge_conf) -> None:
|
||||
patch_exchange(mocker)
|
||||
edge_conf['stake_amount'] = 20
|
||||
edge_cli = EdgeCli(edge_conf)
|
||||
assert edge_cli.config == edge_conf
|
||||
assert edge_cli.config['stake_amount'] == 'unlimited'
|
||||
assert callable(edge_cli.edge.calculate)
|
||||
|
||||
|
||||
def test_generate_edge_table(edge_conf, mocker):
|
||||
patch_exchange(mocker)
|
||||
edge_cli = EdgeCli(edge_conf)
|
||||
|
||||
results = {}
|
||||
results['ETH/BTC'] = PairInfo(-0.01, 0.60, 2, 1, 3, 10, 60)
|
||||
|
||||
assert edge_cli._generate_edge_table(results).count(':|') == 7
|
||||
assert edge_cli._generate_edge_table(results).count('| ETH/BTC |') == 1
|
||||
assert edge_cli._generate_edge_table(results).count(
|
||||
'| risk reward ratio | required risk reward | expectancy |') == 1
|
875
tests/optimize/test_hyperopt.py
Normal file
875
tests/optimize/test_hyperopt.py
Normal file
@@ -0,0 +1,875 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212,C0103
|
||||
import os
|
||||
from datetime import datetime
|
||||
from unittest.mock import MagicMock, PropertyMock
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
from filelock import Timeout
|
||||
from pathlib import Path
|
||||
|
||||
from freqtrade import OperationalException
|
||||
from freqtrade.data.converter import parse_ticker_dataframe
|
||||
from freqtrade.data.history import load_tickerdata_file
|
||||
from freqtrade.optimize import setup_configuration, start_hyperopt
|
||||
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts
|
||||
from freqtrade.optimize.default_hyperopt_loss import DefaultHyperOptLoss
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver, HyperOptLossResolver
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.tests.conftest import (get_args, log_has, log_has_re,
|
||||
patch_exchange,
|
||||
patched_configuration_load_config_file)
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt(default_conf, mocker):
|
||||
default_conf.update({'spaces': ['all']})
|
||||
patch_exchange(mocker)
|
||||
return Hyperopt(default_conf)
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt_results():
|
||||
return pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2, 0.3],
|
||||
'profit_abs': [0.2, 0.4, 0.5],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'profit': [2, 0, 0],
|
||||
'loss': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
def create_trials(mocker, hyperopt) -> None:
|
||||
"""
|
||||
When creating trials, mock the hyperopt Trials so that *by default*
|
||||
- we don't create any pickle'd files in the filesystem
|
||||
- we might have a pickle'd file so make sure that we return
|
||||
false when looking for it
|
||||
"""
|
||||
hyperopt.trials_file = Path('freqtrade/tests/optimize/ut_trials.pickle')
|
||||
|
||||
mocker.patch.object(Path, "is_file", MagicMock(return_value=False))
|
||||
stat_mock = MagicMock()
|
||||
stat_mock.st_size = PropertyMock(return_value=1)
|
||||
mocker.patch.object(Path, "stat", MagicMock(return_value=False))
|
||||
|
||||
mocker.patch.object(Path, "unlink", MagicMock(return_value=True))
|
||||
mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
|
||||
|
||||
return [{'loss': 1, 'result': 'foo', 'params': {}}]
|
||||
|
||||
|
||||
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'hyperopt'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args), RunMode.HYPEROPT)
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
|
||||
assert 'ticker_interval' in config
|
||||
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
|
||||
|
||||
assert 'position_stacking' not in config
|
||||
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
|
||||
|
||||
assert 'refresh_pairs' not in config
|
||||
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
|
||||
|
||||
assert 'timerange' not in config
|
||||
assert 'runmode' in config
|
||||
assert config['runmode'] == RunMode.HYPEROPT
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:DEPRECATED")
|
||||
def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
mocker.patch(
|
||||
'freqtrade.configuration.configuration.create_datadir',
|
||||
lambda c, x: x
|
||||
)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--datadir', '/foo/bar',
|
||||
'hyperopt',
|
||||
'--ticker-interval', '1m',
|
||||
'--timerange', ':100',
|
||||
'--refresh-pairs-cached',
|
||||
'--enable-position-stacking',
|
||||
'--disable-max-market-positions',
|
||||
'--epochs', '1000',
|
||||
'--spaces', 'all',
|
||||
'--print-all'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args), RunMode.HYPEROPT)
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert config['runmode'] == RunMode.HYPEROPT
|
||||
|
||||
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
|
||||
assert 'ticker_interval' in config
|
||||
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
|
||||
caplog)
|
||||
|
||||
assert 'position_stacking' in config
|
||||
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
|
||||
|
||||
assert 'use_max_market_positions' in config
|
||||
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
|
||||
assert log_has('max_open_trades set to unlimited ...', caplog)
|
||||
|
||||
assert 'refresh_pairs' in config
|
||||
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
|
||||
|
||||
assert 'timerange' in config
|
||||
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
|
||||
|
||||
assert 'epochs' in config
|
||||
assert log_has('Parameter --epochs detected ... Will run Hyperopt with for 1000 epochs ...',
|
||||
caplog)
|
||||
|
||||
assert 'spaces' in config
|
||||
assert log_has('Parameter -s/--spaces detected: {}'.format(config['spaces']), caplog)
|
||||
assert 'print_all' in config
|
||||
assert log_has('Parameter --print-all detected ...', caplog)
|
||||
|
||||
|
||||
def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
hyperopts = DefaultHyperOpts
|
||||
delattr(hyperopts, 'populate_buy_trend')
|
||||
delattr(hyperopts, 'populate_sell_trend')
|
||||
mocker.patch(
|
||||
'freqtrade.resolvers.hyperopt_resolver.HyperOptResolver._load_hyperopt',
|
||||
MagicMock(return_value=hyperopts)
|
||||
)
|
||||
x = HyperOptResolver(default_conf, ).hyperopt
|
||||
assert not hasattr(x, 'populate_buy_trend')
|
||||
assert not hasattr(x, 'populate_sell_trend')
|
||||
assert log_has("Custom Hyperopt does not provide populate_sell_trend. "
|
||||
"Using populate_sell_trend from DefaultStrategy.", caplog)
|
||||
assert log_has("Custom Hyperopt does not provide populate_buy_trend. "
|
||||
"Using populate_buy_trend from DefaultStrategy.", caplog)
|
||||
assert hasattr(x, "ticker_interval")
|
||||
|
||||
|
||||
def test_hyperoptresolver_wrongname(mocker, default_conf, caplog) -> None:
|
||||
default_conf.update({'hyperopt': "NonExistingHyperoptClass"})
|
||||
|
||||
with pytest.raises(OperationalException, match=r'Impossible to load Hyperopt.*'):
|
||||
HyperOptResolver(default_conf, ).hyperopt
|
||||
|
||||
|
||||
def test_hyperoptlossresolver(mocker, default_conf, caplog) -> None:
|
||||
|
||||
hl = DefaultHyperOptLoss
|
||||
mocker.patch(
|
||||
'freqtrade.resolvers.hyperopt_resolver.HyperOptLossResolver._load_hyperoptloss',
|
||||
MagicMock(return_value=hl)
|
||||
)
|
||||
x = HyperOptLossResolver(default_conf, ).hyperoptloss
|
||||
assert hasattr(x, "hyperopt_loss_function")
|
||||
|
||||
|
||||
def test_hyperoptlossresolver_wrongname(mocker, default_conf, caplog) -> None:
|
||||
default_conf.update({'hyperopt_loss': "NonExistingLossClass"})
|
||||
|
||||
with pytest.raises(OperationalException, match=r'Impossible to load HyperoptLoss.*'):
|
||||
HyperOptLossResolver(default_conf, ).hyperopt
|
||||
|
||||
|
||||
def test_start(mocker, default_conf, caplog) -> None:
|
||||
start_mock = MagicMock()
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
|
||||
patch_exchange(mocker)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'hyperopt',
|
||||
'--epochs', '5'
|
||||
]
|
||||
args = get_args(args)
|
||||
start_hyperopt(args)
|
||||
|
||||
import pprint
|
||||
pprint.pprint(caplog.record_tuples)
|
||||
|
||||
assert log_has('Starting freqtrade in Hyperopt mode', caplog)
|
||||
assert start_mock.call_count == 1
|
||||
|
||||
|
||||
def test_start_no_data(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock(return_value={}))
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
patch_exchange(mocker)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'hyperopt',
|
||||
'--epochs', '5'
|
||||
]
|
||||
args = get_args(args)
|
||||
start_hyperopt(args)
|
||||
|
||||
import pprint
|
||||
pprint.pprint(caplog.record_tuples)
|
||||
|
||||
assert log_has('No data found. Terminating.', caplog)
|
||||
|
||||
|
||||
def test_start_filelock(mocker, default_conf, caplog) -> None:
|
||||
start_mock = MagicMock(side_effect=Timeout(Hyperopt.get_lock_filename(default_conf)))
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
|
||||
patch_exchange(mocker)
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'hyperopt',
|
||||
'--epochs', '5'
|
||||
]
|
||||
args = get_args(args)
|
||||
start_hyperopt(args)
|
||||
assert log_has("Another running instance of freqtrade Hyperopt detected.", caplog)
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_correct_trade_count(default_conf, hyperopt_results) -> None:
|
||||
hl = HyperOptLossResolver(default_conf).hyperoptloss
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, 600)
|
||||
over = hl.hyperopt_loss_function(hyperopt_results, 600 + 100)
|
||||
under = hl.hyperopt_loss_function(hyperopt_results, 600 - 100)
|
||||
assert over > correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_shorter_trades(default_conf, hyperopt_results) -> None:
|
||||
resultsb = hyperopt_results.copy()
|
||||
resultsb.loc[1, 'trade_duration'] = 20
|
||||
|
||||
hl = HyperOptLossResolver(default_conf).hyperoptloss
|
||||
longer = hl.hyperopt_loss_function(hyperopt_results, 100)
|
||||
shorter = hl.hyperopt_loss_function(resultsb, 100)
|
||||
assert shorter < longer
|
||||
|
||||
|
||||
def test_loss_calculation_has_limited_profit(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
hl = HyperOptLossResolver(default_conf).hyperoptloss
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, 600)
|
||||
over = hl.hyperopt_loss_function(results_over, 600)
|
||||
under = hl.hyperopt_loss_function(results_under, 600)
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sharpe_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLoss'})
|
||||
hl = HyperOptLossResolver(default_conf).hyperoptloss
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'OnlyProfitHyperOptLoss'})
|
||||
hl = HyperOptLossResolver(default_conf).hyperoptloss
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
|
||||
hyperopt.current_best_loss = 2
|
||||
hyperopt.total_epochs = 2
|
||||
hyperopt.log_results(
|
||||
{
|
||||
'loss': 1,
|
||||
'current_epoch': 1,
|
||||
'results_explanation': 'foo.',
|
||||
'is_initial_point': False
|
||||
}
|
||||
)
|
||||
out, err = capsys.readouterr()
|
||||
assert ' 2/2: foo. Objective: 1.00000' in out
|
||||
|
||||
|
||||
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
|
||||
hyperopt.current_best_loss = 2
|
||||
hyperopt.log_results(
|
||||
{
|
||||
'loss': 3,
|
||||
}
|
||||
)
|
||||
assert caplog.record_tuples == []
|
||||
|
||||
|
||||
def test_save_trials_saves_trials(mocker, hyperopt, caplog) -> None:
|
||||
trials = create_trials(mocker, hyperopt)
|
||||
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
|
||||
hyperopt.trials = trials
|
||||
hyperopt.save_trials()
|
||||
|
||||
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
|
||||
assert log_has("Saving 1 evaluations to '{}'".format(trials_file), caplog)
|
||||
mock_dump.assert_called_once()
|
||||
|
||||
|
||||
def test_read_trials_returns_trials_file(mocker, hyperopt, caplog) -> None:
|
||||
trials = create_trials(mocker, hyperopt)
|
||||
mock_load = mocker.patch('freqtrade.optimize.hyperopt.load', return_value=trials)
|
||||
hyperopt_trial = hyperopt.read_trials()
|
||||
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
|
||||
assert log_has("Reading Trials from '{}'".format(trials_file), caplog)
|
||||
assert hyperopt_trial == trials
|
||||
mock_load.assert_called_once()
|
||||
|
||||
|
||||
def test_roi_table_generation(hyperopt) -> None:
|
||||
params = {
|
||||
'roi_t1': 5,
|
||||
'roi_t2': 10,
|
||||
'roi_t3': 15,
|
||||
'roi_p1': 1,
|
||||
'roi_p2': 2,
|
||||
'roi_p3': 3,
|
||||
}
|
||||
|
||||
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
|
||||
|
||||
def test_start_calls_optimizer(mocker, default_conf, caplog, capsys) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result',
|
||||
'params': {'buy': {}, 'sell': {}, 'roi': {}, 'stoploss': 0.0}}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'all',
|
||||
'hyperopt_jobs': 1, })
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
parallel.assert_called_once()
|
||||
|
||||
out, err = capsys.readouterr()
|
||||
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
|
||||
assert dumper.called
|
||||
# Should be called twice, once for tickerdata, once to save evaluations
|
||||
assert dumper.call_count == 2
|
||||
assert hasattr(hyperopt.backtesting, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting, "advise_buy")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == default_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
|
||||
|
||||
def test_format_results(hyperopt):
|
||||
# Test with BTC as stake_currency
|
||||
trades = [
|
||||
('ETH/BTC', 2, 2, 123),
|
||||
('LTC/BTC', 1, 1, 123),
|
||||
('XPR/BTC', -1, -2, -246)
|
||||
]
|
||||
labels = ['currency', 'profit_percent', 'profit_abs', 'trade_duration']
|
||||
df = pd.DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
result = hyperopt.format_results(df)
|
||||
assert result.find(' 66.67%')
|
||||
assert result.find('Total profit 1.00000000 BTC')
|
||||
assert result.find('2.0000Σ %')
|
||||
|
||||
# Test with EUR as stake_currency
|
||||
trades = [
|
||||
('ETH/EUR', 2, 2, 123),
|
||||
('LTC/EUR', 1, 1, 123),
|
||||
('XPR/EUR', -1, -2, -246)
|
||||
]
|
||||
df = pd.DataFrame.from_records(trades, columns=labels)
|
||||
result = hyperopt.format_results(df)
|
||||
assert result.find('Total profit 1.00000000 EUR')
|
||||
|
||||
|
||||
def test_has_space(hyperopt):
|
||||
hyperopt.config.update({'spaces': ['buy', 'roi']})
|
||||
assert hyperopt.has_space('roi')
|
||||
assert hyperopt.has_space('buy')
|
||||
assert not hyperopt.has_space('stoploss')
|
||||
|
||||
hyperopt.config.update({'spaces': ['all']})
|
||||
assert hyperopt.has_space('buy')
|
||||
|
||||
|
||||
def test_populate_indicators(hyperopt, testdatadir) -> None:
|
||||
tick = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
|
||||
fill_missing=True)}
|
||||
dataframes = hyperopt.backtesting.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||
{'pair': 'UNITTEST/BTC'})
|
||||
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
assert 'adx' in dataframe
|
||||
assert 'mfi' in dataframe
|
||||
assert 'rsi' in dataframe
|
||||
|
||||
|
||||
def test_buy_strategy_generator(hyperopt, testdatadir) -> None:
|
||||
tick = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
|
||||
fill_missing=True)}
|
||||
dataframes = hyperopt.backtesting.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||
{'pair': 'UNITTEST/BTC'})
|
||||
|
||||
populate_buy_trend = hyperopt.custom_hyperopt.buy_strategy_generator(
|
||||
{
|
||||
'adx-value': 20,
|
||||
'fastd-value': 20,
|
||||
'mfi-value': 20,
|
||||
'rsi-value': 20,
|
||||
'adx-enabled': True,
|
||||
'fastd-enabled': True,
|
||||
'mfi-enabled': True,
|
||||
'rsi-enabled': True,
|
||||
'trigger': 'bb_lower'
|
||||
}
|
||||
)
|
||||
result = populate_buy_trend(dataframe, {'pair': 'UNITTEST/BTC'})
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
assert 'buy' in result
|
||||
assert 1 in result['buy']
|
||||
|
||||
|
||||
def test_generate_optimizer(mocker, default_conf) -> None:
|
||||
default_conf.update({'config': 'config.json.example'})
|
||||
default_conf.update({'timerange': None})
|
||||
default_conf.update({'spaces': 'all'})
|
||||
default_conf.update({'hyperopt_min_trades': 1})
|
||||
|
||||
trades = [
|
||||
('POWR/BTC', 0.023117, 0.000233, 100)
|
||||
]
|
||||
labels = ['currency', 'profit_percent', 'profit_abs', 'trade_duration']
|
||||
backtest_result = pd.DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Backtesting.backtest',
|
||||
MagicMock(return_value=backtest_result)
|
||||
)
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(Arrow(2017, 12, 10), Arrow(2017, 12, 13)))
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load', MagicMock())
|
||||
|
||||
optimizer_param = {
|
||||
'adx-value': 0,
|
||||
'fastd-value': 35,
|
||||
'mfi-value': 0,
|
||||
'rsi-value': 0,
|
||||
'adx-enabled': False,
|
||||
'fastd-enabled': True,
|
||||
'mfi-enabled': False,
|
||||
'rsi-enabled': False,
|
||||
'trigger': 'macd_cross_signal',
|
||||
'sell-adx-value': 0,
|
||||
'sell-fastd-value': 75,
|
||||
'sell-mfi-value': 0,
|
||||
'sell-rsi-value': 0,
|
||||
'sell-adx-enabled': False,
|
||||
'sell-fastd-enabled': True,
|
||||
'sell-mfi-enabled': False,
|
||||
'sell-rsi-enabled': False,
|
||||
'sell-trigger': 'macd_cross_signal',
|
||||
'roi_t1': 60.0,
|
||||
'roi_t2': 30.0,
|
||||
'roi_t3': 20.0,
|
||||
'roi_p1': 0.01,
|
||||
'roi_p2': 0.01,
|
||||
'roi_p3': 0.1,
|
||||
'stoploss': -0.4,
|
||||
}
|
||||
response_expected = {
|
||||
'loss': 1.9840569076926293,
|
||||
'results_explanation': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
|
||||
'( 2.31Σ%). Avg duration 100.0 mins.',
|
||||
'params': optimizer_param,
|
||||
'total_profit': 0.00023300
|
||||
}
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
generate_optimizer_value = hyperopt.generate_optimizer(list(optimizer_param.values()))
|
||||
assert generate_optimizer_value == response_expected
|
||||
|
||||
|
||||
def test_clean_hyperopt(mocker, default_conf, caplog):
|
||||
patch_exchange(mocker)
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'all',
|
||||
'hyperopt_jobs': 1,
|
||||
})
|
||||
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
|
||||
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
|
||||
h = Hyperopt(default_conf)
|
||||
|
||||
assert unlinkmock.call_count == 2
|
||||
assert log_has(f"Removing `{h.tickerdata_pickle}`.", caplog)
|
||||
|
||||
|
||||
def test_continue_hyperopt(mocker, default_conf, caplog):
|
||||
patch_exchange(mocker)
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'all',
|
||||
'hyperopt_jobs': 1,
|
||||
'hyperopt_continue': True
|
||||
})
|
||||
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
|
||||
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
|
||||
Hyperopt(default_conf)
|
||||
|
||||
assert unlinkmock.call_count == 0
|
||||
assert log_has(f"Continuing on previous hyperopt results.", caplog)
|
||||
|
||||
|
||||
def test_print_json_spaces_all(mocker, default_conf, caplog, capsys) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'all',
|
||||
'hyperopt_jobs': 1,
|
||||
'print_json': True,
|
||||
})
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
parallel.assert_called_once()
|
||||
|
||||
out, err = capsys.readouterr()
|
||||
assert '{"params":{"mfi-value":null,"fastd-value":null,"adx-value":null,"rsi-value":null,"mfi-enabled":null,"fastd-enabled":null,"adx-enabled":null,"rsi-enabled":null,"trigger":null,"sell-mfi-value":null,"sell-fastd-value":null,"sell-adx-value":null,"sell-rsi-value":null,"sell-mfi-enabled":null,"sell-fastd-enabled":null,"sell-adx-enabled":null,"sell-rsi-enabled":null,"sell-trigger":null},"minimal_roi":{},"stoploss":null}' in out # noqa: E501
|
||||
assert dumper.called
|
||||
# Should be called twice, once for tickerdata, once to save evaluations
|
||||
assert dumper.call_count == 2
|
||||
|
||||
|
||||
def test_print_json_spaces_roi_stoploss(mocker, default_conf, caplog, capsys) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'roi stoploss',
|
||||
'hyperopt_jobs': 1,
|
||||
'print_json': True,
|
||||
})
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
parallel.assert_called_once()
|
||||
|
||||
out, err = capsys.readouterr()
|
||||
assert '{"minimal_roi":{},"stoploss":null}' in out
|
||||
assert dumper.called
|
||||
# Should be called twice, once for tickerdata, once to save evaluations
|
||||
assert dumper.call_count == 2
|
||||
|
||||
|
||||
def test_simplified_interface_roi_stoploss(mocker, default_conf, caplog, capsys) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{
|
||||
'loss': 1, 'results_explanation': 'foo result', 'params': {'stoploss': 0.0}}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'roi stoploss',
|
||||
'hyperopt_jobs': 1, })
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
|
||||
del hyperopt.custom_hyperopt.__class__.sell_strategy_generator
|
||||
del hyperopt.custom_hyperopt.__class__.indicator_space
|
||||
del hyperopt.custom_hyperopt.__class__.sell_indicator_space
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
parallel.assert_called_once()
|
||||
|
||||
out, err = capsys.readouterr()
|
||||
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
|
||||
assert dumper.called
|
||||
# Should be called twice, once for tickerdata, once to save evaluations
|
||||
assert dumper.call_count == 2
|
||||
assert hasattr(hyperopt.backtesting, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting, "advise_buy")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == default_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
|
||||
|
||||
def test_simplified_interface_all_failed(mocker, default_conf, caplog, capsys) -> None:
|
||||
mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'all',
|
||||
'hyperopt_jobs': 1, })
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
|
||||
del hyperopt.custom_hyperopt.__class__.sell_strategy_generator
|
||||
del hyperopt.custom_hyperopt.__class__.indicator_space
|
||||
del hyperopt.custom_hyperopt.__class__.sell_indicator_space
|
||||
|
||||
with pytest.raises(OperationalException, match=r"The 'buy' space is included into *"):
|
||||
hyperopt.start()
|
||||
|
||||
|
||||
def test_simplified_interface_buy(mocker, default_conf, caplog, capsys) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'buy',
|
||||
'hyperopt_jobs': 1, })
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
# TODO: sell_strategy_generator() is actually not called because
|
||||
# run_optimizer_parallel() is mocked
|
||||
del hyperopt.custom_hyperopt.__class__.sell_strategy_generator
|
||||
del hyperopt.custom_hyperopt.__class__.sell_indicator_space
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
parallel.assert_called_once()
|
||||
|
||||
out, err = capsys.readouterr()
|
||||
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
|
||||
assert dumper.called
|
||||
# Should be called twice, once for tickerdata, once to save evaluations
|
||||
assert dumper.call_count == 2
|
||||
assert hasattr(hyperopt.backtesting, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting, "advise_buy")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == default_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
|
||||
|
||||
def test_simplified_interface_sell(mocker, default_conf, caplog, capsys) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
parallel = mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
|
||||
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': 'sell',
|
||||
'hyperopt_jobs': 1, })
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
# TODO: buy_strategy_generator() is actually not called because
|
||||
# run_optimizer_parallel() is mocked
|
||||
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
|
||||
del hyperopt.custom_hyperopt.__class__.indicator_space
|
||||
|
||||
hyperopt.start()
|
||||
|
||||
parallel.assert_called_once()
|
||||
|
||||
out, err = capsys.readouterr()
|
||||
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
|
||||
assert dumper.called
|
||||
# Should be called twice, once for tickerdata, once to save evaluations
|
||||
assert dumper.call_count == 2
|
||||
assert hasattr(hyperopt.backtesting, "advise_sell")
|
||||
assert hasattr(hyperopt.backtesting, "advise_buy")
|
||||
assert hasattr(hyperopt, "max_open_trades")
|
||||
assert hyperopt.max_open_trades == default_conf['max_open_trades']
|
||||
assert hasattr(hyperopt, "position_stacking")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("method,space", [
|
||||
('buy_strategy_generator', 'buy'),
|
||||
('indicator_space', 'buy'),
|
||||
('sell_strategy_generator', 'sell'),
|
||||
('sell_indicator_space', 'sell'),
|
||||
])
|
||||
def test_simplified_interface_failed(mocker, default_conf, caplog, capsys, method, space) -> None:
|
||||
mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
)
|
||||
|
||||
patch_exchange(mocker)
|
||||
|
||||
default_conf.update({'config': 'config.json.example',
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': space,
|
||||
'hyperopt_jobs': 1, })
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
||||
|
||||
delattr(hyperopt.custom_hyperopt.__class__, method)
|
||||
|
||||
with pytest.raises(OperationalException, match=f"The '{space}' space is included into *"):
|
||||
hyperopt.start()
|
Reference in New Issue
Block a user