Merge branch 'develop' into backtest_live_models

This commit is contained in:
Wagner Costa Santos
2022-11-07 15:14:10 -03:00
18 changed files with 102 additions and 27 deletions

View File

@@ -636,6 +636,8 @@ class FreqaiDataDrawer:
axis=0,
)
self.current_candle = history_data[dk.pair][self.config['timeframe']].iloc[-1]['date']
def load_all_pair_histories(self, timerange: TimeRange, dk: FreqaiDataKitchen) -> None:
"""
Load pair histories for all whitelist and corr_pairlist pairs.

View File

@@ -1177,11 +1177,13 @@ class FreqaiDataKitchen:
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
for pair in pairs:
pair = pair.replace(':', '') # lightgbm doesnt like colons
valid_strs = [f"%-{pair}", f"%{pair}", f"%_{pair}"]
pair_cols = [col for col in dataframe.columns if
any(substr in col for substr in valid_strs)]
pair_cols.insert(0, 'date')
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
if pair_cols:
pair_cols.insert(0, 'date')
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
return corr_dataframes
@@ -1199,8 +1201,9 @@ class FreqaiDataKitchen:
ready for training
"""
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
current_pair = current_pair.replace(':', '')
for pair in pairs:
pair = pair.replace(':', '') # lightgbm doesnt work with colons
if current_pair != pair:
dataframe = dataframe.merge(corr_dataframes[pair], how='left', on='date')
@@ -1270,6 +1273,8 @@ class FreqaiDataKitchen:
self.get_unique_classes_from_labels(dataframe)
dataframe = self.remove_special_chars_from_feature_names(dataframe)
return dataframe
def fit_labels(self) -> None:
@@ -1471,3 +1476,16 @@ class FreqaiDataKitchen:
assets_end_dates[asset].append(model_end_date)
return assets_end_dates
def remove_special_chars_from_feature_names(self, dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Remove all special characters from feature strings (:)
:param dataframe: the dataframe that just finished indicator population. (unfiltered)
:return: dataframe with cleaned featrue names
"""
spec_chars = [':']
for c in spec_chars:
dataframe.columns = dataframe.columns.str.replace(c, "")
return dataframe

View File

@@ -68,6 +68,9 @@ class IFreqaiModel(ABC):
if self.save_backtest_models:
logger.info('Backtesting module configured to save all models.')
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
# set current candle to arbitrary historical date
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
self.dd.current_candle = self.current_candle
self.scanning = False
self.ft_params = self.freqai_info["feature_parameters"]
self.corr_pairlist: List[str] = self.ft_params.get("include_corr_pairlist", [])
@@ -75,7 +78,7 @@ class IFreqaiModel(ABC):
if self.keras and self.ft_params.get("DI_threshold", 0):
self.ft_params["DI_threshold"] = 0
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
self.CONV_WIDTH = self.freqai_info.get('conv_width', 1)
if self.ft_params.get("inlier_metric_window", 0):
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
self.pair_it = 0
@@ -93,7 +96,6 @@ class IFreqaiModel(ABC):
# get_corr_dataframes is controlling the caching of corr_dataframes
# for improved performance. Careful with this boolean.
self.get_corr_dataframes: bool = True
self._threads: List[threading.Thread] = []
self._stop_event = threading.Event()
@@ -338,6 +340,7 @@ class IFreqaiModel(ABC):
if self.dd.historic_data:
self.dd.update_historic_data(strategy, dk)
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
self.track_current_candle()
if not self.follow_mode:
@@ -682,8 +685,6 @@ class IFreqaiModel(ABC):
" avoid blinding open trades and degrading performance.")
self.pair_it = 0
self.inference_time = 0
if self.corr_pairlist:
self.get_corr_dataframes = True
return
def train_timer(self, do: Literal['start', 'stop'] = 'start', pair: str = ''):
@@ -759,12 +760,24 @@ class IFreqaiModel(ABC):
"is included in the column names when you are creating features "
"in `populate_any_indicators()`.")
self.get_corr_dataframes = not bool(self.corr_dataframes)
else:
elif self.corr_dataframes:
dataframe = dk.attach_corr_pair_columns(
dataframe, self.corr_dataframes, dk.pair)
return dataframe
def track_current_candle(self):
"""
Checks if the latest candle appended by the datadrawer is
equivalent to the latest candle seen by FreqAI. If not, it
asks to refresh the cached corr_dfs, and resets the pair
counter.
"""
if self.dd.current_candle > self.current_candle:
self.get_corr_dataframes = True
self.pair_it = 1
self.current_candle = self.dd.current_candle
def ensure_data_exists(self, dataframe_backtest: DataFrame,
tr_backtest: TimeRange, pair: str) -> bool:
"""