diff --git a/docs/hyperopt.md b/docs/hyperopt.md index 4fba925d0..96f9ff177 100644 --- a/docs/hyperopt.md +++ b/docs/hyperopt.md @@ -253,7 +253,7 @@ We continue to define hyperoptable parameters: class MyAwesomeStrategy(IStrategy): buy_adx = DecimalParameter(20, 40, decimals=1, default=30.1, space="buy") buy_rsi = IntParameter(20, 40, default=30, space="buy") - buy_adx_enabled = CategoricalParameter([True, False], default=True, space="buy") + buy_adx_enabled = BooleanParameter(default=True, space="buy") buy_rsi_enabled = CategoricalParameter([True, False], default=False, space="buy") buy_trigger = CategoricalParameter(["bb_lower", "macd_cross_signal"], default="bb_lower", space="buy") ``` @@ -316,6 +316,7 @@ There are four parameter types each suited for different purposes. * `DecimalParameter` - defines a floating point parameter with a limited number of decimals (default 3). Should be preferred instead of `RealParameter` in most cases. * `RealParameter` - defines a floating point parameter with upper and lower boundaries and no precision limit. Rarely used as it creates a space with a near infinite number of possibilities. * `CategoricalParameter` - defines a parameter with a predetermined number of choices. +* `BooleanParameter` - Shorthand for `CategoricalParameter([True, False])` - great for "enable" parameters. !!! Tip "Disabling parameter optimization" Each parameter takes two boolean parameters: @@ -326,7 +327,7 @@ There are four parameter types each suited for different purposes. !!! Warning Hyperoptable parameters cannot be used in `populate_indicators` - as hyperopt does not recalculate indicators for each epoch, so the starting value would be used in this case. -### Optimizing an indicator parameter +## Optimizing an indicator parameter Assuming you have a simple strategy in mind - a EMA cross strategy (2 Moving averages crossing) - and you'd like to find the ideal parameters for this strategy. @@ -336,8 +337,8 @@ from functools import reduce import talib.abstract as ta -from freqtrade.strategy import IStrategy -from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter +from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter, + IStrategy, IntParameter) import freqtrade.vendor.qtpylib.indicators as qtpylib class MyAwesomeStrategy(IStrategy): @@ -413,6 +414,98 @@ While this strategy is most likely too simple to provide consistent profit, it s While this may slow down the hyperopt startup speed, the overall performance will increase as the Hyperopt execution itself may pick the same value for multiple epochs (changing other values). You should however try to use space ranges as small as possible. Every new column will require more memory, and every possibility hyperopt can try will increase the search space. +## Optimizing protections + +Freqtrade can also optimize protections. How you optimize protections is up to you, and the following should be considered as example only. + +The strategy will simply need to define the "protections" entry as property returning a list of protection configurations. + +``` python +from pandas import DataFrame +from functools import reduce + +import talib.abstract as ta + +from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter, + IStrategy, IntParameter) +import freqtrade.vendor.qtpylib.indicators as qtpylib + +class MyAwesomeStrategy(IStrategy): + stoploss = -0.05 + timeframe = '15m' + # Define the parameter spaces + cooldown_lookback = IntParameter(2, 48, default=5, space="protection", optimize=True) + stop_duration = IntParameter(12, 200, default=5, space="protection", optimize=True) + use_stop_protection = BooleanParameter(default=True, space="protection", optimize=True) + + + @property + def protections(self): + prot = [] + + prot.append({ + "method": "CooldownPeriod", + "stop_duration_candles": self.cooldown_lookback.value + }) + if self.use_stop_protection.value: + prot.append({ + "method": "StoplossGuard", + "lookback_period_candles": 24 * 3, + "trade_limit": 4, + "stop_duration_candles": self.stop_duration.value, + "only_per_pair": False + }) + + return protection + + def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: + # ... + +``` + +You can then run hyperopt as follows: +`freqtrade hyperopt --hyperopt-loss SharpeHyperOptLossDaily --strategy MyAwesomeStrategy --spaces protection` + +!!! Note + The protection space is not part of the default space, and is only available with the Parameters Hyperopt interface, not with the legacy hyperopt interface (which required separate hyperopt files). + Freqtrade will also automatically change the "--enable-protections" flag if the protection space is selected. + +!!! Warning + If protections are defined as property, entries from the configuration will be ignored. + It is therefore recommended to not define protections in the configuration. + +### Migrating from previous property setups + +A migration from a previous setup is pretty simple, and can be accomplished by converting the protections entry to a property. +In simple terms, the following configuration will be converted to the below. + +``` python +class MyAwesomeStrategy(IStrategy): + protections = [ + { + "method": "CooldownPeriod", + "stop_duration_candles": 4 + } + ] +``` + +Result + +``` python +class MyAwesomeStrategy(IStrategy): + + @property + def protections(self): + return [ + { + "method": "CooldownPeriod", + "stop_duration_candles": 4 + } + ] +``` + +You will then obviously also change potential interesting entries to parameters to allow hyper-optimization. + ## Loss-functions Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results. diff --git a/docs/includes/protections.md b/docs/includes/protections.md index 5dcc83738..0757d2f6d 100644 --- a/docs/includes/protections.md +++ b/docs/includes/protections.md @@ -15,6 +15,10 @@ All protection end times are rounded up to the next candle to avoid sudden, unex !!! Note "Backtesting" Protections are supported by backtesting and hyperopt, but must be explicitly enabled by using the `--enable-protections` flag. +!!! Warning "Setting protections from the configuration" + Setting protections from the configuration via `"protections": [],` key should be considered deprecated and will be removed in a future version. + It is also no longer guaranteed that your protections apply to the strategy in cases where the strategy defines [protections as property](hyperopt.md#optimizing-protections). + ### Available Protections * [`StoplossGuard`](#stoploss-guard) Stop trading if a certain amount of stoploss occurred within a certain time window. @@ -47,15 +51,17 @@ This applies across all pairs, unless `only_per_pair` is set to true, which will The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles. ``` python -protections = [ - { - "method": "StoplossGuard", - "lookback_period_candles": 24, - "trade_limit": 4, - "stop_duration_candles": 4, - "only_per_pair": False - } -] +@property +def protections(self): + return [ + { + "method": "StoplossGuard", + "lookback_period_candles": 24, + "trade_limit": 4, + "stop_duration_candles": 4, + "only_per_pair": False + } + ] ``` !!! Note @@ -69,15 +75,17 @@ protections = [ The below sample stops trading for 12 candles if max-drawdown is > 20% considering all pairs - with a minimum of `trade_limit` trades - within the last 48 candles. If desired, `lookback_period` and/or `stop_duration` can be used. ``` python -protections = [ - { - "method": "MaxDrawdown", - "lookback_period_candles": 48, - "trade_limit": 20, - "stop_duration_candles": 12, - "max_allowed_drawdown": 0.2 - }, -] +@property +def protections(self): + return [ + { + "method": "MaxDrawdown", + "lookback_period_candles": 48, + "trade_limit": 20, + "stop_duration_candles": 12, + "max_allowed_drawdown": 0.2 + }, + ] ``` #### Low Profit Pairs @@ -88,15 +96,17 @@ If that ratio is below `required_profit`, that pair will be locked for `stop_dur The below example will stop trading a pair for 60 minutes if the pair does not have a required profit of 2% (and a minimum of 2 trades) within the last 6 candles. ``` python -protections = [ - { - "method": "LowProfitPairs", - "lookback_period_candles": 6, - "trade_limit": 2, - "stop_duration": 60, - "required_profit": 0.02 - } -] +@property +def protections(self): + return [ + { + "method": "LowProfitPairs", + "lookback_period_candles": 6, + "trade_limit": 2, + "stop_duration": 60, + "required_profit": 0.02 + } + ] ``` #### Cooldown Period @@ -106,12 +116,14 @@ protections = [ The below example will stop trading a pair for 2 candles after closing a trade, allowing this pair to "cool down". ``` python -protections = [ - { - "method": "CooldownPeriod", - "stop_duration_candles": 2 - } -] +@property +def protections(self): + return [ + { + "method": "CooldownPeriod", + "stop_duration_candles": 2 + } + ] ``` !!! Note @@ -136,39 +148,42 @@ from freqtrade.strategy import IStrategy class AwesomeStrategy(IStrategy) timeframe = '1h' - protections = [ - { - "method": "CooldownPeriod", - "stop_duration_candles": 5 - }, - { - "method": "MaxDrawdown", - "lookback_period_candles": 48, - "trade_limit": 20, - "stop_duration_candles": 4, - "max_allowed_drawdown": 0.2 - }, - { - "method": "StoplossGuard", - "lookback_period_candles": 24, - "trade_limit": 4, - "stop_duration_candles": 2, - "only_per_pair": False - }, - { - "method": "LowProfitPairs", - "lookback_period_candles": 6, - "trade_limit": 2, - "stop_duration_candles": 60, - "required_profit": 0.02 - }, - { - "method": "LowProfitPairs", - "lookback_period_candles": 24, - "trade_limit": 4, - "stop_duration_candles": 2, - "required_profit": 0.01 - } - ] + + @property + def protections(self): + return [ + { + "method": "CooldownPeriod", + "stop_duration_candles": 5 + }, + { + "method": "MaxDrawdown", + "lookback_period_candles": 48, + "trade_limit": 20, + "stop_duration_candles": 4, + "max_allowed_drawdown": 0.2 + }, + { + "method": "StoplossGuard", + "lookback_period_candles": 24, + "trade_limit": 4, + "stop_duration_candles": 2, + "only_per_pair": False + }, + { + "method": "LowProfitPairs", + "lookback_period_candles": 6, + "trade_limit": 2, + "stop_duration_candles": 60, + "required_profit": 0.02 + }, + { + "method": "LowProfitPairs", + "lookback_period_candles": 24, + "trade_limit": 4, + "stop_duration_candles": 2, + "required_profit": 0.01 + } + ] # ... ``` diff --git a/freqtrade/commands/cli_options.py b/freqtrade/commands/cli_options.py index f56a2bf18..215ed3f6e 100644 --- a/freqtrade/commands/cli_options.py +++ b/freqtrade/commands/cli_options.py @@ -218,7 +218,7 @@ AVAILABLE_CLI_OPTIONS = { "spaces": Arg( '--spaces', help='Specify which parameters to hyperopt. Space-separated list.', - choices=['all', 'buy', 'sell', 'roi', 'stoploss', 'trailing', 'default'], + choices=['all', 'buy', 'sell', 'roi', 'stoploss', 'trailing', 'protection', 'default'], nargs='+', default='default', ), diff --git a/freqtrade/configuration/deprecated_settings.py b/freqtrade/configuration/deprecated_settings.py index e59e51f87..5efe26bd2 100644 --- a/freqtrade/configuration/deprecated_settings.py +++ b/freqtrade/configuration/deprecated_settings.py @@ -110,3 +110,6 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None: "Please remove 'ticker_interval' from your configuration to continue operating." ) config['timeframe'] = config['ticker_interval'] + + if 'protections' in config: + logger.warning("DEPRECATED: Setting 'protections' in the configuration is deprecated.") diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 45e60e013..3079e326d 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -146,6 +146,8 @@ class Backtesting: # since a "perfect" stoploss-sell is assumed anyway # And the regular "stoploss" function would not apply to that case self.strategy.order_types['stoploss_on_exchange'] = False + + def _load_protections(self, strategy: IStrategy): if self.config.get('enable_protections', False): conf = self.config if hasattr(strategy, 'protections'): @@ -194,6 +196,7 @@ class Backtesting: Trade.reset_trades() self.rejected_trades = 0 self.dataprovider.clear_cache() + self._load_protections(self.strategy) def check_abort(self): """ diff --git a/freqtrade/optimize/hyperopt.py b/freqtrade/optimize/hyperopt.py index d40bbb73b..0db78aa39 100644 --- a/freqtrade/optimize/hyperopt.py +++ b/freqtrade/optimize/hyperopt.py @@ -66,6 +66,7 @@ class Hyperopt: def __init__(self, config: Dict[str, Any]) -> None: self.buy_space: List[Dimension] = [] self.sell_space: List[Dimension] = [] + self.protection_space: List[Dimension] = [] self.roi_space: List[Dimension] = [] self.stoploss_space: List[Dimension] = [] self.trailing_space: List[Dimension] = [] @@ -191,6 +192,8 @@ class Hyperopt: result['buy'] = {p.name: params.get(p.name) for p in self.buy_space} if HyperoptTools.has_space(self.config, 'sell'): result['sell'] = {p.name: params.get(p.name) for p in self.sell_space} + if HyperoptTools.has_space(self.config, 'protection'): + result['protection'] = {p.name: params.get(p.name) for p in self.protection_space} if HyperoptTools.has_space(self.config, 'roi'): result['roi'] = {str(k): v for k, v in self.custom_hyperopt.generate_roi_table(params).items()} @@ -241,6 +244,12 @@ class Hyperopt: """ Assign the dimensions in the hyperoptimization space. """ + if self.auto_hyperopt and HyperoptTools.has_space(self.config, 'protection'): + # Protections can only be optimized when using the Parameter interface + logger.debug("Hyperopt has 'protection' space") + # Enable Protections if protection space is selected. + self.config['enable_protections'] = True + self.protection_space = self.custom_hyperopt.protection_space() if HyperoptTools.has_space(self.config, 'buy'): logger.debug("Hyperopt has 'buy' space") @@ -261,8 +270,8 @@ class Hyperopt: if HyperoptTools.has_space(self.config, 'trailing'): logger.debug("Hyperopt has 'trailing' space") self.trailing_space = self.custom_hyperopt.trailing_space() - self.dimensions = (self.buy_space + self.sell_space + self.roi_space + - self.stoploss_space + self.trailing_space) + self.dimensions = (self.buy_space + self.sell_space + self.protection_space + + self.roi_space + self.stoploss_space + self.trailing_space) def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict: """ @@ -282,6 +291,12 @@ class Hyperopt: self.backtesting.strategy.advise_sell = ( # type: ignore self.custom_hyperopt.sell_strategy_generator(params_dict)) + if HyperoptTools.has_space(self.config, 'protection'): + for attr_name, attr in self.backtesting.strategy.enumerate_parameters('protection'): + if attr.optimize: + # noinspection PyProtectedMember + attr.value = params_dict[attr_name] + if HyperoptTools.has_space(self.config, 'roi'): self.backtesting.strategy.minimal_roi = ( # type: ignore self.custom_hyperopt.generate_roi_table(params_dict)) diff --git a/freqtrade/optimize/hyperopt_auto.py b/freqtrade/optimize/hyperopt_auto.py index f86204406..03f7dd21e 100644 --- a/freqtrade/optimize/hyperopt_auto.py +++ b/freqtrade/optimize/hyperopt_auto.py @@ -73,6 +73,9 @@ class HyperOptAuto(IHyperOpt): def sell_indicator_space(self) -> List['Dimension']: return self._get_indicator_space('sell', 'sell_indicator_space') + def protection_space(self) -> List['Dimension']: + return self._get_indicator_space('protection', 'indicator_space') + def generate_roi_table(self, params: Dict) -> Dict[int, float]: return self._get_func('generate_roi_table')(params) diff --git a/freqtrade/optimize/hyperopt_interface.py b/freqtrade/optimize/hyperopt_interface.py index 889854cad..500798627 100644 --- a/freqtrade/optimize/hyperopt_interface.py +++ b/freqtrade/optimize/hyperopt_interface.py @@ -57,6 +57,13 @@ class IHyperOpt(ABC): """ raise OperationalException(_format_exception_message('sell_strategy_generator', 'sell')) + def protection_space(self) -> List[Dimension]: + """ + Create a protection space. + Only supported by the Parameter interface. + """ + raise OperationalException(_format_exception_message('indicator_space', 'protection')) + def indicator_space(self) -> List[Dimension]: """ Create an indicator space. diff --git a/freqtrade/optimize/hyperopt_tools.py b/freqtrade/optimize/hyperopt_tools.py index 51f1f977a..52aa85c84 100755 --- a/freqtrade/optimize/hyperopt_tools.py +++ b/freqtrade/optimize/hyperopt_tools.py @@ -82,8 +82,8 @@ class HyperoptTools(): """ Tell if the space value is contained in the configuration """ - # The 'trailing' space is not included in the 'default' set of spaces - if space == 'trailing': + # 'trailing' and 'protection spaces are not included in the 'default' set of spaces + if space in ('trailing', 'protection'): return any(s in config['spaces'] for s in [space, 'all']) else: return any(s in config['spaces'] for s in [space, 'all', 'default']) @@ -149,7 +149,7 @@ class HyperoptTools(): if print_json: result_dict: Dict = {} - for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']: + for s in ['buy', 'sell', 'protection', 'roi', 'stoploss', 'trailing']: HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s) print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE)) @@ -158,6 +158,8 @@ class HyperoptTools(): non_optimized) HyperoptTools._params_pretty_print(params, 'sell', "Sell hyperspace params:", non_optimized) + HyperoptTools._params_pretty_print(params, 'protection', + "Protection hyperspace params:", non_optimized) HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized) HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized) HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized) diff --git a/freqtrade/plugins/protections/iprotection.py b/freqtrade/plugins/protections/iprotection.py index d034beefc..e0a89e334 100644 --- a/freqtrade/plugins/protections/iprotection.py +++ b/freqtrade/plugins/protections/iprotection.py @@ -25,19 +25,22 @@ class IProtection(LoggingMixin, ABC): def __init__(self, config: Dict[str, Any], protection_config: Dict[str, Any]) -> None: self._config = config self._protection_config = protection_config + self._stop_duration_candles: Optional[int] = None + self._lookback_period_candles: Optional[int] = None + tf_in_min = timeframe_to_minutes(config['timeframe']) if 'stop_duration_candles' in protection_config: - self._stop_duration_candles = protection_config.get('stop_duration_candles', 1) + self._stop_duration_candles = int(protection_config.get('stop_duration_candles', 1)) self._stop_duration = (tf_in_min * self._stop_duration_candles) else: self._stop_duration_candles = None self._stop_duration = protection_config.get('stop_duration', 60) if 'lookback_period_candles' in protection_config: - self._lookback_period_candles = protection_config.get('lookback_period_candles', 1) + self._lookback_period_candles = int(protection_config.get('lookback_period_candles', 1)) self._lookback_period = tf_in_min * self._lookback_period_candles else: self._lookback_period_candles = None - self._lookback_period = protection_config.get('lookback_period', 60) + self._lookback_period = int(protection_config.get('lookback_period', 60)) LoggingMixin.__init__(self, logger) diff --git a/freqtrade/resolvers/strategy_resolver.py b/freqtrade/resolvers/strategy_resolver.py index 82942bd68..e7c077e84 100644 --- a/freqtrade/resolvers/strategy_resolver.py +++ b/freqtrade/resolvers/strategy_resolver.py @@ -119,7 +119,7 @@ class StrategyResolver(IResolver): - default (if not None) """ if (attribute in config - and not isinstance(getattr(type(strategy), 'my_property', None), property)): + and not isinstance(getattr(type(strategy), attribute, None), property)): # Ensure Properties are not overwritten setattr(strategy, attribute, config[attribute]) logger.info("Override strategy '%s' with value in config file: %s.", diff --git a/freqtrade/strategy/__init__.py b/freqtrade/strategy/__init__.py index bd49165df..be655fc33 100644 --- a/freqtrade/strategy/__init__.py +++ b/freqtrade/strategy/__init__.py @@ -1,7 +1,7 @@ # flake8: noqa: F401 from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date, timeframe_to_prev_date, timeframe_to_seconds) -from freqtrade.strategy.hyper import (CategoricalParameter, DecimalParameter, IntParameter, - RealParameter) +from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter, + IntParameter, RealParameter) from freqtrade.strategy.interface import IStrategy from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open diff --git a/freqtrade/strategy/hyper.py b/freqtrade/strategy/hyper.py index b067e19d5..dad282d7e 100644 --- a/freqtrade/strategy/hyper.py +++ b/freqtrade/strategy/hyper.py @@ -270,6 +270,28 @@ class CategoricalParameter(BaseParameter): return [self.value] +class BooleanParameter(CategoricalParameter): + + def __init__(self, *, default: Optional[Any] = None, + space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs): + """ + Initialize hyperopt-optimizable Boolean Parameter. + It's a shortcut to `CategoricalParameter([True, False])`. + :param default: A default value. If not specified, first item from specified space will be + used. + :param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if + parameter field + name is prefixed with 'buy_' or 'sell_'. + :param optimize: Include parameter in hyperopt optimizations. + :param load: Load parameter value from {space}_params. + :param kwargs: Extra parameters to skopt.space.Categorical. + """ + + categories = [True, False] + super().__init__(categories=categories, default=default, space=space, optimize=optimize, + load=load, **kwargs) + + class HyperStrategyMixin(object): """ A helper base class which allows HyperOptAuto class to reuse implementations of buy/sell @@ -283,6 +305,7 @@ class HyperStrategyMixin(object): self.config = config self.ft_buy_params: List[BaseParameter] = [] self.ft_sell_params: List[BaseParameter] = [] + self.ft_protection_params: List[BaseParameter] = [] self._load_hyper_params(config.get('runmode') == RunMode.HYPEROPT) @@ -292,11 +315,12 @@ class HyperStrategyMixin(object): :param category: :return: """ - if category not in ('buy', 'sell', None): - raise OperationalException('Category must be one of: "buy", "sell", None.') + if category not in ('buy', 'sell', 'protection', None): + raise OperationalException( + 'Category must be one of: "buy", "sell", "protection", None.') if category is None: - params = self.ft_buy_params + self.ft_sell_params + params = self.ft_buy_params + self.ft_sell_params + self.ft_protection_params else: params = getattr(self, f"ft_{category}_params") @@ -324,9 +348,10 @@ class HyperStrategyMixin(object): params: Dict = { 'buy': list(cls.detect_parameters('buy')), 'sell': list(cls.detect_parameters('sell')), + 'protection': list(cls.detect_parameters('protection')), } params.update({ - 'count': len(params['buy'] + params['sell']) + 'count': len(params['buy'] + params['sell'] + params['protection']) }) return params @@ -340,9 +365,12 @@ class HyperStrategyMixin(object): self._ft_params_from_file = params buy_params = deep_merge_dicts(params.get('buy', {}), getattr(self, 'buy_params', {})) sell_params = deep_merge_dicts(params.get('sell', {}), getattr(self, 'sell_params', {})) + protection_params = deep_merge_dicts(params.get('protection', {}), + getattr(self, 'protection_params', {})) self._load_params(buy_params, 'buy', hyperopt) self._load_params(sell_params, 'sell', hyperopt) + self._load_params(protection_params, 'protection', hyperopt) def load_params_from_file(self) -> Dict: filename_str = getattr(self, '__file__', '') @@ -397,7 +425,8 @@ class HyperStrategyMixin(object): """ params = { 'buy': {}, - 'sell': {} + 'sell': {}, + 'protection': {}, } for name, p in self.enumerate_parameters(): if not p.optimize or not p.in_space: diff --git a/freqtrade/templates/base_strategy.py.j2 b/freqtrade/templates/base_strategy.py.j2 index 13fc0853a..06d7cbc5c 100644 --- a/freqtrade/templates/base_strategy.py.j2 +++ b/freqtrade/templates/base_strategy.py.j2 @@ -6,8 +6,8 @@ import numpy as np # noqa import pandas as pd # noqa from pandas import DataFrame -from freqtrade.strategy import IStrategy -from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter +from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter, + IStrategy, IntParameter) # -------------------------------- # Add your lib to import here diff --git a/freqtrade/templates/sample_strategy.py b/freqtrade/templates/sample_strategy.py index 282b2f8e2..574819949 100644 --- a/freqtrade/templates/sample_strategy.py +++ b/freqtrade/templates/sample_strategy.py @@ -6,8 +6,8 @@ import numpy as np # noqa import pandas as pd # noqa from pandas import DataFrame -from freqtrade.strategy import IStrategy -from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter +from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter, + IStrategy, IntParameter) # -------------------------------- # Add your lib to import here diff --git a/tests/optimize/test_hyperopt.py b/tests/optimize/test_hyperopt.py index b5197e73f..d146e84f1 100644 --- a/tests/optimize/test_hyperopt.py +++ b/tests/optimize/test_hyperopt.py @@ -577,6 +577,7 @@ def test_generate_optimizer(mocker, hyperopt_conf) -> None: "20.0": 0.02, "50.0": 0.01, "110.0": 0}, + 'protection': {}, 'sell': {'sell-adx-enabled': False, 'sell-adx-value': 0, 'sell-fastd-enabled': True, @@ -592,7 +593,7 @@ def test_generate_optimizer(mocker, hyperopt_conf) -> None: 'trailing_stop_positive': 0.02, 'trailing_stop_positive_offset': 0.07}}, 'params_dict': optimizer_param, - 'params_not_optimized': {'buy': {}, 'sell': {}}, + 'params_not_optimized': {'buy': {}, 'protection': {}, 'sell': {}}, 'results_metrics': ANY, 'total_profit': 3.1e-08 } @@ -1002,6 +1003,8 @@ def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None: hyperopt_conf.update({ 'strategy': 'HyperoptableStrategy', 'user_data_dir': Path(tmpdir), + 'hyperopt_random_state': 42, + 'spaces': ['all'] }) hyperopt = Hyperopt(hyperopt_conf) assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto) @@ -1009,12 +1012,18 @@ def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None: assert hyperopt.backtesting.strategy.buy_rsi.in_space is True assert hyperopt.backtesting.strategy.buy_rsi.value == 35 + assert hyperopt.backtesting.strategy.sell_rsi.value == 74 + assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30 buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range assert isinstance(buy_rsi_range, range) # Range from 0 - 50 (inclusive) assert len(list(buy_rsi_range)) == 51 hyperopt.start() + # All values should've changed. + assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value != 30 + assert hyperopt.backtesting.strategy.buy_rsi.value != 35 + assert hyperopt.backtesting.strategy.sell_rsi.value != 74 def test_SKDecimal(): diff --git a/tests/strategy/strats/hyperoptable_strategy.py b/tests/strategy/strats/hyperoptable_strategy.py index cc4734e13..88bdd078e 100644 --- a/tests/strategy/strats/hyperoptable_strategy.py +++ b/tests/strategy/strats/hyperoptable_strategy.py @@ -4,7 +4,8 @@ import talib.abstract as ta from pandas import DataFrame import freqtrade.vendor.qtpylib.indicators as qtpylib -from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, RealParameter +from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy, + RealParameter) class HyperoptableStrategy(IStrategy): @@ -64,6 +65,18 @@ class HyperoptableStrategy(IStrategy): sell_rsi = IntParameter(low=50, high=100, default=70, space='sell') sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell', load=False) + protection_enabled = BooleanParameter(default=True) + protection_cooldown_lookback = IntParameter([0, 50], default=30) + + @property + def protections(self): + prot = [] + if self.protection_enabled.value: + prot.append({ + "method": "CooldownPeriod", + "stop_duration_candles": self.protection_cooldown_lookback.value + }) + return prot def informative_pairs(self): """ diff --git a/tests/strategy/test_interface.py b/tests/strategy/test_interface.py index d8c87506c..0ad6d6f32 100644 --- a/tests/strategy/test_interface.py +++ b/tests/strategy/test_interface.py @@ -16,8 +16,8 @@ from freqtrade.exceptions import OperationalException, StrategyError from freqtrade.optimize.space import SKDecimal from freqtrade.persistence import PairLocks, Trade from freqtrade.resolvers import StrategyResolver -from freqtrade.strategy.hyper import (BaseParameter, CategoricalParameter, DecimalParameter, - IntParameter, RealParameter) +from freqtrade.strategy.hyper import (BaseParameter, BooleanParameter, CategoricalParameter, + DecimalParameter, IntParameter, RealParameter) from freqtrade.strategy.interface import SellCheckTuple from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper from tests.conftest import log_has, log_has_re @@ -717,6 +717,17 @@ def test_hyperopt_parameters(): assert len(list(catpar.range)) == 3 assert list(catpar.range) == ['buy_rsi', 'buy_macd', 'buy_none'] + boolpar = BooleanParameter(default=True, space='buy') + assert boolpar.value is True + assert isinstance(boolpar.get_space(''), Categorical) + assert isinstance(boolpar.range, list) + assert len(list(boolpar.range)) == 1 + + boolpar.in_space = True + assert len(list(boolpar.range)) == 2 + + assert list(boolpar.range) == [True, False] + def test_auto_hyperopt_interface(default_conf): default_conf.update({'strategy': 'HyperoptableStrategy'}) @@ -734,7 +745,8 @@ def test_auto_hyperopt_interface(default_conf): assert isinstance(all_params, dict) assert len(all_params['buy']) == 2 assert len(all_params['sell']) == 2 - assert all_params['count'] == 4 + # Number of Hyperoptable parameters + assert all_params['count'] == 6 strategy.__class__.sell_rsi = IntParameter([0, 10], default=5, space='buy') diff --git a/tests/test_configuration.py b/tests/test_configuration.py index f97ccd488..7c555a39e 100644 --- a/tests/test_configuration.py +++ b/tests/test_configuration.py @@ -1330,7 +1330,7 @@ def test_process_removed_setting(mocker, default_conf, caplog): 'sectionB', 'somesetting') -def test_process_deprecated_ticker_interval(mocker, default_conf, caplog): +def test_process_deprecated_ticker_interval(default_conf, caplog): message = "DEPRECATED: Please use 'timeframe' instead of 'ticker_interval." config = deepcopy(default_conf) process_temporary_deprecated_settings(config) @@ -1352,6 +1352,17 @@ def test_process_deprecated_ticker_interval(mocker, default_conf, caplog): process_temporary_deprecated_settings(config) +def test_process_deprecated_protections(default_conf, caplog): + message = "DEPRECATED: Setting 'protections' in the configuration is deprecated." + config = deepcopy(default_conf) + process_temporary_deprecated_settings(config) + assert not log_has(message, caplog) + + config['protections'] = [] + process_temporary_deprecated_settings(config) + assert log_has(message, caplog) + + def test_flat_vars_to_nested_dict(caplog): test_args = {