ensure full pair string is used for caching dataframes. If not, revert to old behavior. Update docs.
This commit is contained in:
parent
a9db668082
commit
650bb8b7d7
@ -61,7 +61,7 @@ The FreqAI strategy requires including the following lines of code in the standa
|
|||||||
"""
|
"""
|
||||||
Function designed to automatically generate, name and merge features
|
Function designed to automatically generate, name and merge features
|
||||||
from user indicated timeframes in the configuration file. User controls the indicators
|
from user indicated timeframes in the configuration file. User controls the indicators
|
||||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
passed to the training/prediction by prepending indicators with `'%-' + pair `
|
||||||
(see convention below). I.e. user should not prepend any supporting metrics
|
(see convention below). I.e. user should not prepend any supporting metrics
|
||||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||||
model.
|
model.
|
||||||
@ -69,20 +69,17 @@ The FreqAI strategy requires including the following lines of code in the standa
|
|||||||
:param df: strategy dataframe which will receive merges from informatives
|
:param df: strategy dataframe which will receive merges from informatives
|
||||||
:param tf: timeframe of the dataframe which will modify the feature names
|
:param tf: timeframe of the dataframe which will modify the feature names
|
||||||
:param informative: the dataframe associated with the informative pair
|
:param informative: the dataframe associated with the informative pair
|
||||||
:param coin: the name of the coin which will modify the feature names.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
coin = pair.split('/')[0]
|
|
||||||
|
|
||||||
if informative is None:
|
if informative is None:
|
||||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||||
|
|
||||||
# first loop is automatically duplicating indicators for time periods
|
# first loop is automatically duplicating indicators for time periods
|
||||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||||
t = int(t)
|
t = int(t)
|
||||||
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
|
||||||
|
|
||||||
indicators = [col for col in informative if col.startswith("%")]
|
indicators = [col for col in informative if col.startswith("%")]
|
||||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||||
@ -134,7 +131,7 @@ Notice also the location of the labels under `if set_generalized_indicators:` at
|
|||||||
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`):
|
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`):
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def populate_any_indicators(self, metadata, pair, df, tf, informative=None, coin="", set_generalized_indicators=False):
|
def populate_any_indicators(self, pair, df, tf, informative=None, set_generalized_indicators=False):
|
||||||
|
|
||||||
...
|
...
|
||||||
|
|
||||||
|
@ -2,7 +2,10 @@
|
|||||||
|
|
||||||
## Defining the features
|
## Defining the features
|
||||||
|
|
||||||
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%`, while labels/targets are prepended with `&`.
|
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%-{pair}`, while labels/targets are prepended with `&`.
|
||||||
|
|
||||||
|
!!! Note
|
||||||
|
Adding the full pair string, e.g. XYZ/USD, in the feature name enables improved performance for dataframe caching on the backend. If users elect *not* to add the full pair string in the feature string, FreqAI will operate in a reduced performance mode.
|
||||||
|
|
||||||
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
|
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
|
||||||
|
|
||||||
@ -15,7 +18,7 @@ It is advisable to start from the template `populate_any_indicators()` in the so
|
|||||||
"""
|
"""
|
||||||
Function designed to automatically generate, name, and merge features
|
Function designed to automatically generate, name, and merge features
|
||||||
from user-indicated timeframes in the configuration file. The user controls the indicators
|
from user-indicated timeframes in the configuration file. The user controls the indicators
|
||||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
passed to the training/prediction by prepending indicators with `'%-' + pair `
|
||||||
(see convention below). I.e., the user should not prepend any supporting metrics
|
(see convention below). I.e., the user should not prepend any supporting metrics
|
||||||
(e.g., bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
(e.g., bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||||
model.
|
model.
|
||||||
@ -23,37 +26,34 @@ It is advisable to start from the template `populate_any_indicators()` in the so
|
|||||||
:param df: strategy dataframe which will receive merges from informatives
|
:param df: strategy dataframe which will receive merges from informatives
|
||||||
:param tf: timeframe of the dataframe which will modify the feature names
|
:param tf: timeframe of the dataframe which will modify the feature names
|
||||||
:param informative: the dataframe associated with the informative pair
|
:param informative: the dataframe associated with the informative pair
|
||||||
:param coin: the name of the coin which will modify the feature names.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
coin = pair.split('/')[0]
|
|
||||||
|
|
||||||
if informative is None:
|
if informative is None:
|
||||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||||
|
|
||||||
# first loop is automatically duplicating indicators for time periods
|
# first loop is automatically duplicating indicators for time periods
|
||||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||||
t = int(t)
|
t = int(t)
|
||||||
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
|
||||||
|
|
||||||
bollinger = qtpylib.bollinger_bands(
|
bollinger = qtpylib.bollinger_bands(
|
||||||
qtpylib.typical_price(informative), window=t, stds=2.2
|
qtpylib.typical_price(informative), window=t, stds=2.2
|
||||||
)
|
)
|
||||||
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
|
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
|
||||||
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
|
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
|
||||||
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
|
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
|
||||||
|
|
||||||
informative[f"%-{coin}bb_width-period_{t}"] = (
|
informative[f"%-{pair}bb_width-period_{t}"] = (
|
||||||
informative[f"{coin}bb_upperband-period_{t}"]
|
informative[f"{pair}bb_upperband-period_{t}"]
|
||||||
- informative[f"{coin}bb_lowerband-period_{t}"]
|
- informative[f"{pair}bb_lowerband-period_{t}"]
|
||||||
) / informative[f"{coin}bb_middleband-period_{t}"]
|
) / informative[f"{pair}bb_middleband-period_{t}"]
|
||||||
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
|
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
|
||||||
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
|
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
|
||||||
)
|
)
|
||||||
|
|
||||||
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
informative[f"%-{pair}relative_volume-period_{t}"] = (
|
||||||
informative["volume"] / informative["volume"].rolling(t).mean()
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1133,17 +1133,19 @@ class FreqaiDataKitchen:
|
|||||||
"""
|
"""
|
||||||
Find the columns of the dataframe corresponding to the corr_pairlist, save them
|
Find the columns of the dataframe corresponding to the corr_pairlist, save them
|
||||||
in a dictionary to be reused and attached to other pairs.
|
in a dictionary to be reused and attached to other pairs.
|
||||||
:params:
|
|
||||||
:dataframe: fully populated dataframe (current pair + corr_pairs)
|
:param dataframe: fully populated dataframe (current pair + corr_pairs)
|
||||||
:return:
|
:return: corr_dataframes, dictionary of dataframes to be attached
|
||||||
:corr_dataframes: dictionary of dataframes to be attached to other pairs in same candle.
|
to other pairs in same candle.
|
||||||
"""
|
"""
|
||||||
corr_dataframes: Dict[str, DataFrame] = {}
|
corr_dataframes: Dict[str, DataFrame] = {}
|
||||||
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
||||||
|
|
||||||
for pair in pairs:
|
for pair in pairs:
|
||||||
coin = pair.split('/')[0]
|
valid_strs = [f"%-{pair}", f"%{pair}", f"%_{pair}"]
|
||||||
pair_cols = [col for col in dataframe.columns if coin in col]
|
pair_cols = [col for col in dataframe.columns if
|
||||||
|
any(substr in col for substr in valid_strs)]
|
||||||
|
pair_cols.insert(0, 'date')
|
||||||
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
|
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
|
||||||
|
|
||||||
return corr_dataframes
|
return corr_dataframes
|
||||||
@ -1153,10 +1155,10 @@ class FreqaiDataKitchen:
|
|||||||
current_pair: str) -> DataFrame:
|
current_pair: str) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Attach the existing corr_pair dataframes to the current pair dataframe before training
|
Attach the existing corr_pair dataframes to the current pair dataframe before training
|
||||||
:params:
|
|
||||||
:dataframe: current pair strategy dataframe, indicators populated already
|
:param dataframe: current pair strategy dataframe, indicators populated already
|
||||||
:corr_dataframes: dictionary of saved dataframes from earlier in the same candle
|
:param corr_dataframes: dictionary of saved dataframes from earlier in the same candle
|
||||||
:current_pair: current pair to which we will attach corr pair dataframe
|
:param current_pair: current pair to which we will attach corr pair dataframe
|
||||||
:return:
|
:return:
|
||||||
:dataframe: current pair dataframe of populated indicators, concatenated with corr_pairs
|
:dataframe: current pair dataframe of populated indicators, concatenated with corr_pairs
|
||||||
ready for training
|
ready for training
|
||||||
@ -1164,8 +1166,8 @@ class FreqaiDataKitchen:
|
|||||||
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
||||||
|
|
||||||
for pair in pairs:
|
for pair in pairs:
|
||||||
if current_pair not in pair:
|
if current_pair != pair:
|
||||||
dataframe = pd.concat([dataframe, corr_dataframes[pair]], axis=1)
|
dataframe = dataframe.merge(corr_dataframes[pair], how='left', on='date')
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
@ -1186,15 +1188,15 @@ class FreqaiDataKitchen:
|
|||||||
:param base_dataframes: dict = dict containing the current pair dataframes
|
:param base_dataframes: dict = dict containing the current pair dataframes
|
||||||
(for user defined timeframes)
|
(for user defined timeframes)
|
||||||
:param metadata: dict = strategy furnished pair metadata
|
:param metadata: dict = strategy furnished pair metadata
|
||||||
:returns:
|
:return:
|
||||||
dataframe: DataFrame = dataframe containing populated indicators
|
dataframe: DataFrame = dataframe containing populated indicators
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# for prediction dataframe creation, we let dataprovider handle everything in the strategy
|
# for prediction dataframe creation, we let dataprovider handle everything in the strategy
|
||||||
# so we create empty dictionaries, which allows us to pass None to
|
# so we create empty dictionaries, which allows us to pass None to
|
||||||
# `populate_any_indicators()`. Signaling we want the dp to give us the live dataframe.
|
# `populate_any_indicators()`. Signaling we want the dp to give us the live dataframe.
|
||||||
tfs = self.freqai_config["feature_parameters"].get("include_timeframes")
|
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||||
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
pairs: List[str] = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
||||||
if not prediction_dataframe.empty:
|
if not prediction_dataframe.empty:
|
||||||
dataframe = prediction_dataframe.copy()
|
dataframe = prediction_dataframe.copy()
|
||||||
for tf in tfs:
|
for tf in tfs:
|
||||||
@ -1219,16 +1221,16 @@ class FreqaiDataKitchen:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# ensure corr pairs are always last
|
# ensure corr pairs are always last
|
||||||
for i in pairs:
|
for corr_pair in pairs:
|
||||||
if pair in i:
|
if pair == corr_pair:
|
||||||
continue # dont repeat anything from whitelist
|
continue # dont repeat anything from whitelist
|
||||||
for tf in tfs:
|
for tf in tfs:
|
||||||
if pairs and do_corr_pairs:
|
if pairs and do_corr_pairs:
|
||||||
dataframe = strategy.populate_any_indicators(
|
dataframe = strategy.populate_any_indicators(
|
||||||
i,
|
corr_pair,
|
||||||
dataframe.copy(),
|
dataframe.copy(),
|
||||||
tf,
|
tf,
|
||||||
informative=corr_dataframes[i][tf]
|
informative=corr_dataframes[corr_pair][tf]
|
||||||
)
|
)
|
||||||
|
|
||||||
self.get_unique_classes_from_labels(dataframe)
|
self.get_unique_classes_from_labels(dataframe)
|
||||||
|
@ -72,6 +72,7 @@ class IFreqaiModel(ABC):
|
|||||||
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||||
self.scanning = False
|
self.scanning = False
|
||||||
self.ft_params = self.freqai_info["feature_parameters"]
|
self.ft_params = self.freqai_info["feature_parameters"]
|
||||||
|
self.corr_pairlist = self.ft_params.get("include_corr_pairlist", [])
|
||||||
self.keras: bool = self.freqai_info.get("keras", False)
|
self.keras: bool = self.freqai_info.get("keras", False)
|
||||||
if self.keras and self.ft_params.get("DI_threshold", 0):
|
if self.keras and self.ft_params.get("DI_threshold", 0):
|
||||||
self.ft_params["DI_threshold"] = 0
|
self.ft_params["DI_threshold"] = 0
|
||||||
@ -375,12 +376,8 @@ class IFreqaiModel(ABC):
|
|||||||
self.dd.return_null_values_to_strategy(dataframe, dk)
|
self.dd.return_null_values_to_strategy(dataframe, dk)
|
||||||
return dk
|
return dk
|
||||||
|
|
||||||
if self.get_corr_dataframes:
|
if self.corr_pairlist:
|
||||||
self.corr_dataframes = dk.extract_corr_pair_columns_from_populated_indicators(dataframe)
|
dataframe = self.cache_corr_pairlist_dfs(dataframe, dk)
|
||||||
self.get_corr_dataframes = False
|
|
||||||
else:
|
|
||||||
dataframe = dk.attach_corr_pair_columns(
|
|
||||||
dataframe, self.corr_dataframes, metadata["pair"])
|
|
||||||
|
|
||||||
dk.find_labels(dataframe)
|
dk.find_labels(dataframe)
|
||||||
|
|
||||||
@ -687,6 +684,7 @@ class IFreqaiModel(ABC):
|
|||||||
" avoid blinding open trades and degrading performance.")
|
" avoid blinding open trades and degrading performance.")
|
||||||
self.pair_it = 0
|
self.pair_it = 0
|
||||||
self.inference_time = 0
|
self.inference_time = 0
|
||||||
|
if self.corr_pairlist:
|
||||||
self.get_corr_dataframes = True
|
self.get_corr_dataframes = True
|
||||||
return
|
return
|
||||||
|
|
||||||
@ -746,6 +744,29 @@ class IFreqaiModel(ABC):
|
|||||||
f'Best approximation queue: {best_queue}')
|
f'Best approximation queue: {best_queue}')
|
||||||
return best_queue
|
return best_queue
|
||||||
|
|
||||||
|
def cache_corr_pairlist_dfs(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Cache the corr_pairlist dfs to speed up performance for subsequent pairs during the
|
||||||
|
current candle.
|
||||||
|
:param dataframe: strategy fed dataframe
|
||||||
|
:param dk: datakitchen object for current asset
|
||||||
|
:return: dataframe to attach/extract cached corr_pair dfs to/from.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if self.get_corr_dataframes:
|
||||||
|
self.corr_dataframes = dk.extract_corr_pair_columns_from_populated_indicators(dataframe)
|
||||||
|
if not self.corr_dataframes:
|
||||||
|
logger.warning("Couldn't cache corr_pair dataframes for improved performance. "
|
||||||
|
"Consider ensuring that the full coin/stake, e.g. XYZ/USD, "
|
||||||
|
"is included in the column names when you are creating features "
|
||||||
|
"in `populate_any_indicators()`.")
|
||||||
|
self.get_corr_dataframes = not bool(self.corr_dataframes)
|
||||||
|
else:
|
||||||
|
dataframe = dk.attach_corr_pair_columns(
|
||||||
|
dataframe, self.corr_dataframes, dk.pair)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
# Following methods which are overridden by user made prediction models.
|
# Following methods which are overridden by user made prediction models.
|
||||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||||
|
|
||||||
|
@ -53,7 +53,7 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
"""
|
"""
|
||||||
Function designed to automatically generate, name and merge features
|
Function designed to automatically generate, name and merge features
|
||||||
from user indicated timeframes in the configuration file. User controls the indicators
|
from user indicated timeframes in the configuration file. User controls the indicators
|
||||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
passed to the training/prediction by prepending indicators with `f'%-{pair}`
|
||||||
(see convention below). I.e. user should not prepend any supporting metrics
|
(see convention below). I.e. user should not prepend any supporting metrics
|
||||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||||
model.
|
model.
|
||||||
@ -63,8 +63,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
:param informative: the dataframe associated with the informative pair
|
:param informative: the dataframe associated with the informative pair
|
||||||
"""
|
"""
|
||||||
|
|
||||||
coin = pair.split('/')[0]
|
|
||||||
|
|
||||||
if informative is None:
|
if informative is None:
|
||||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||||
|
|
||||||
@ -72,36 +70,36 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||||
|
|
||||||
t = int(t)
|
t = int(t)
|
||||||
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
|
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
informative[f"%-{pair}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
informative[f"%-{pair}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
||||||
|
|
||||||
bollinger = qtpylib.bollinger_bands(
|
bollinger = qtpylib.bollinger_bands(
|
||||||
qtpylib.typical_price(informative), window=t, stds=2.2
|
qtpylib.typical_price(informative), window=t, stds=2.2
|
||||||
)
|
)
|
||||||
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
|
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
|
||||||
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
|
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
|
||||||
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
|
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
|
||||||
|
|
||||||
informative[f"%-{coin}bb_width-period_{t}"] = (
|
informative[f"%-{pair}bb_width-period_{t}"] = (
|
||||||
informative[f"{coin}bb_upperband-period_{t}"]
|
informative[f"{pair}bb_upperband-period_{t}"]
|
||||||
- informative[f"{coin}bb_lowerband-period_{t}"]
|
- informative[f"{pair}bb_lowerband-period_{t}"]
|
||||||
) / informative[f"{coin}bb_middleband-period_{t}"]
|
) / informative[f"{pair}bb_middleband-period_{t}"]
|
||||||
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
|
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
|
||||||
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
|
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
|
||||||
)
|
)
|
||||||
|
|
||||||
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
informative[f"%-{pair}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
||||||
|
|
||||||
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
informative[f"%-{pair}relative_volume-period_{t}"] = (
|
||||||
informative["volume"] / informative["volume"].rolling(t).mean()
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
||||||
)
|
)
|
||||||
|
|
||||||
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
|
informative[f"%-{pair}pct-change"] = informative["close"].pct_change()
|
||||||
informative[f"%-{coin}raw_volume"] = informative["volume"]
|
informative[f"%-{pair}raw_volume"] = informative["volume"]
|
||||||
informative[f"%-{coin}raw_price"] = informative["close"]
|
informative[f"%-{pair}raw_price"] = informative["close"]
|
||||||
|
|
||||||
indicators = [col for col in informative if col.startswith("%")]
|
indicators = [col for col in informative if col.startswith("%")]
|
||||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||||
|
Loading…
Reference in New Issue
Block a user