Merge pull request #571 from stephendade/userhyper
Separated out custom hyperopts
This commit is contained in:
commit
64028647a0
@ -204,6 +204,8 @@ optional arguments:
|
|||||||
number)
|
number)
|
||||||
--timerange TIMERANGE
|
--timerange TIMERANGE
|
||||||
specify what timerange of data to use.
|
specify what timerange of data to use.
|
||||||
|
--hyperopt PATH specify hyperopt file (default:
|
||||||
|
freqtrade/optimize/default_hyperopt.py)
|
||||||
-e INT, --epochs INT specify number of epochs (default: 100)
|
-e INT, --epochs INT specify number of epochs (default: 100)
|
||||||
-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...], --spaces {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]
|
-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...], --spaces {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]
|
||||||
Specify which parameters to hyperopt. Space separate
|
Specify which parameters to hyperopt. Space separate
|
||||||
|
@ -19,18 +19,27 @@ and still take a long time.
|
|||||||
|
|
||||||
## Prepare Hyperopting
|
## Prepare Hyperopting
|
||||||
|
|
||||||
We recommend you start by taking a look at `hyperopt.py` file located in [freqtrade/optimize](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py)
|
Before we start digging in Hyperopt, we recommend you to take a look at
|
||||||
|
an example hyperopt file located into [user_data/hyperopts/](https://github.com/gcarq/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py)
|
||||||
|
|
||||||
### Configure your Guards and Triggers
|
### 1. Install a Custom Hyperopt File
|
||||||
|
This is very simple. Put your hyperopt file into the folder
|
||||||
|
`user_data/hyperopts`.
|
||||||
|
|
||||||
There are two places you need to change to add a new buy strategy for testing:
|
Let assume you want a hyperopt file `awesome_hyperopt.py`:
|
||||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L231-L264).
|
1. Copy the file `user_data/hyperopts/sample_hyperopt.py` into `user_data/hyperopts/awesome_hyperopt.py`
|
||||||
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L213-L224)
|
|
||||||
and the associated methods `indicator_space`, `roi_space`, `stoploss_space`.
|
|
||||||
|
|
||||||
There you have two different type of indicators: 1. `guards` and 2. `triggers`.
|
|
||||||
1. Guards are conditions like "never buy if ADX < 10", or "never buy if
|
### 2. Configure your Guards and Triggers
|
||||||
current price is over EMA10".
|
There are two places you need to change in your hyperopt file to add a
|
||||||
|
new buy hyperopt for testing:
|
||||||
|
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py#L230-L251).
|
||||||
|
- Inside [indicator_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py#L207-L223).
|
||||||
|
|
||||||
|
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
|
||||||
|
|
||||||
|
1. Guards are conditions like "never buy if ADX < 10", or never buy if
|
||||||
|
current price is over EMA10.
|
||||||
2. Triggers are ones that actually trigger buy in specific moment, like
|
2. Triggers are ones that actually trigger buy in specific moment, like
|
||||||
"buy when EMA5 crosses over EMA10" or "buy when close price touches lower
|
"buy when EMA5 crosses over EMA10" or "buy when close price touches lower
|
||||||
bollinger band".
|
bollinger band".
|
||||||
@ -124,9 +133,12 @@ Because hyperopt tries a lot of combinations to find the best parameters it will
|
|||||||
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
|
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
|
python3 ./freqtrade/main.py -s <strategyname> --hyperopt <hyperoptname> -c config.json hyperopt -e 5000
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Use `<strategyname>` and `<hyperoptname>` as the names of the custom strategy
|
||||||
|
(only required for generating sells) and the custom hyperopt used.
|
||||||
|
|
||||||
The `-e` flag will set how many evaluations hyperopt will do. We recommend
|
The `-e` flag will set how many evaluations hyperopt will do. We recommend
|
||||||
running at least several thousand evaluations.
|
running at least several thousand evaluations.
|
||||||
|
|
||||||
|
@ -104,6 +104,14 @@ class Arguments(object):
|
|||||||
type=str,
|
type=str,
|
||||||
metavar='PATH',
|
metavar='PATH',
|
||||||
)
|
)
|
||||||
|
self.parser.add_argument(
|
||||||
|
'--customhyperopt',
|
||||||
|
help='specify hyperopt class name (default: %(default)s)',
|
||||||
|
dest='hyperopt',
|
||||||
|
default=constants.DEFAULT_HYPEROPT,
|
||||||
|
type=str,
|
||||||
|
metavar='NAME',
|
||||||
|
)
|
||||||
self.parser.add_argument(
|
self.parser.add_argument(
|
||||||
'--dynamic-whitelist',
|
'--dynamic-whitelist',
|
||||||
help='dynamically generate and update whitelist'
|
help='dynamically generate and update whitelist'
|
||||||
|
@ -53,6 +53,9 @@ class Configuration(object):
|
|||||||
if self.args.strategy_path:
|
if self.args.strategy_path:
|
||||||
config.update({'strategy_path': self.args.strategy_path})
|
config.update({'strategy_path': self.args.strategy_path})
|
||||||
|
|
||||||
|
# Add the hyperopt file to use
|
||||||
|
config.update({'hyperopt': self.args.hyperopt})
|
||||||
|
|
||||||
# Load Common configuration
|
# Load Common configuration
|
||||||
config = self._load_common_config(config)
|
config = self._load_common_config(config)
|
||||||
|
|
||||||
|
@ -9,6 +9,7 @@ TICKER_INTERVAL = 5 # min
|
|||||||
HYPEROPT_EPOCH = 100 # epochs
|
HYPEROPT_EPOCH = 100 # epochs
|
||||||
RETRY_TIMEOUT = 30 # sec
|
RETRY_TIMEOUT = 30 # sec
|
||||||
DEFAULT_STRATEGY = 'DefaultStrategy'
|
DEFAULT_STRATEGY = 'DefaultStrategy'
|
||||||
|
DEFAULT_HYPEROPT = 'DefaultHyperOpts'
|
||||||
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
|
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
|
||||||
DEFAULT_DB_DRYRUN_URL = 'sqlite://'
|
DEFAULT_DB_DRYRUN_URL = 'sqlite://'
|
||||||
UNLIMITED_STAKE_AMOUNT = 'unlimited'
|
UNLIMITED_STAKE_AMOUNT = 'unlimited'
|
||||||
|
@ -20,6 +20,7 @@ from pandas import DataFrame
|
|||||||
from freqtrade import misc, constants, OperationalException
|
from freqtrade import misc, constants, OperationalException
|
||||||
from freqtrade.exchange import Exchange
|
from freqtrade.exchange import Exchange
|
||||||
from freqtrade.arguments import TimeRange
|
from freqtrade.arguments import TimeRange
|
||||||
|
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts # noqa: F401
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
130
freqtrade/optimize/default_hyperopt.py
Normal file
130
freqtrade/optimize/default_hyperopt.py
Normal file
@ -0,0 +1,130 @@
|
|||||||
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||||
|
|
||||||
|
import talib.abstract as ta
|
||||||
|
from pandas import DataFrame
|
||||||
|
from typing import Dict, Any, Callable, List
|
||||||
|
from functools import reduce
|
||||||
|
|
||||||
|
from skopt.space import Categorical, Dimension, Integer, Real
|
||||||
|
|
||||||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||||
|
|
||||||
|
class_name = 'DefaultHyperOpts'
|
||||||
|
|
||||||
|
|
||||||
|
class DefaultHyperOpts(IHyperOpt):
|
||||||
|
"""
|
||||||
|
Default hyperopt provided by freqtrade bot.
|
||||||
|
You can override it with your own hyperopt
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
macd = ta.MACD(dataframe)
|
||||||
|
dataframe['macd'] = macd['macd']
|
||||||
|
dataframe['macdsignal'] = macd['macdsignal']
|
||||||
|
dataframe['mfi'] = ta.MFI(dataframe)
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||||
|
# Bollinger bands
|
||||||
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
|
dataframe['sar'] = ta.SAR(dataframe)
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||||
|
"""
|
||||||
|
Define the buy strategy parameters to be used by hyperopt
|
||||||
|
"""
|
||||||
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Buy strategy Hyperopt will build and use
|
||||||
|
"""
|
||||||
|
conditions = []
|
||||||
|
# GUARDS AND TRENDS
|
||||||
|
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||||
|
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||||
|
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||||
|
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||||
|
if 'adx-enabled' in params and params['adx-enabled']:
|
||||||
|
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||||
|
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||||
|
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||||
|
|
||||||
|
# TRIGGERS
|
||||||
|
if params['trigger'] == 'bb_lower':
|
||||||
|
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||||
|
if params['trigger'] == 'macd_cross_signal':
|
||||||
|
conditions.append(qtpylib.crossed_above(
|
||||||
|
dataframe['macd'], dataframe['macdsignal']
|
||||||
|
))
|
||||||
|
if params['trigger'] == 'sar_reversal':
|
||||||
|
conditions.append(qtpylib.crossed_above(
|
||||||
|
dataframe['close'], dataframe['sar']
|
||||||
|
))
|
||||||
|
|
||||||
|
dataframe.loc[
|
||||||
|
reduce(lambda x, y: x & y, conditions),
|
||||||
|
'buy'] = 1
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
return populate_buy_trend
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def indicator_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Define your Hyperopt space for searching strategy parameters
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
Integer(10, 25, name='mfi-value'),
|
||||||
|
Integer(15, 45, name='fastd-value'),
|
||||||
|
Integer(20, 50, name='adx-value'),
|
||||||
|
Integer(20, 40, name='rsi-value'),
|
||||||
|
Categorical([True, False], name='mfi-enabled'),
|
||||||
|
Categorical([True, False], name='fastd-enabled'),
|
||||||
|
Categorical([True, False], name='adx-enabled'),
|
||||||
|
Categorical([True, False], name='rsi-enabled'),
|
||||||
|
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||||
|
]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||||
|
"""
|
||||||
|
Generate the ROI table that will be used by Hyperopt
|
||||||
|
"""
|
||||||
|
roi_table = {}
|
||||||
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||||
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||||
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||||
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||||
|
|
||||||
|
return roi_table
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def stoploss_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Stoploss Value to search
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
Real(-0.5, -0.02, name='stoploss'),
|
||||||
|
]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def roi_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Values to search for each ROI steps
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
Integer(10, 120, name='roi_t1'),
|
||||||
|
Integer(10, 60, name='roi_t2'),
|
||||||
|
Integer(10, 40, name='roi_t3'),
|
||||||
|
Real(0.01, 0.04, name='roi_p1'),
|
||||||
|
Real(0.01, 0.07, name='roi_p2'),
|
||||||
|
Real(0.01, 0.20, name='roi_p3'),
|
||||||
|
]
|
@ -9,22 +9,21 @@ import multiprocessing
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
from argparse import Namespace
|
from argparse import Namespace
|
||||||
from functools import reduce
|
|
||||||
from math import exp
|
from math import exp
|
||||||
from operator import itemgetter
|
from operator import itemgetter
|
||||||
from typing import Any, Callable, Dict, List
|
from typing import Any, Dict, List
|
||||||
|
|
||||||
import talib.abstract as ta
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
from sklearn.externals.joblib import Parallel, delayed, dump, load
|
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects
|
||||||
from skopt import Optimizer
|
from skopt import Optimizer
|
||||||
from skopt.space import Categorical, Dimension, Integer, Real
|
from skopt.space import Dimension
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
||||||
from freqtrade.arguments import Arguments
|
from freqtrade.arguments import Arguments
|
||||||
from freqtrade.configuration import Configuration
|
from freqtrade.configuration import Configuration
|
||||||
from freqtrade.optimize import load_data
|
from freqtrade.optimize import load_data
|
||||||
from freqtrade.optimize.backtesting import Backtesting
|
from freqtrade.optimize.backtesting import Backtesting
|
||||||
|
from freqtrade.optimize.hyperopt_resolver import HyperOptResolver
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -42,6 +41,9 @@ class Hyperopt(Backtesting):
|
|||||||
"""
|
"""
|
||||||
def __init__(self, config: Dict[str, Any]) -> None:
|
def __init__(self, config: Dict[str, Any]) -> None:
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
|
self.config = config
|
||||||
|
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
|
||||||
|
|
||||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||||
# to the number of days
|
# to the number of days
|
||||||
self.target_trades = 600
|
self.target_trades = 600
|
||||||
@ -74,24 +76,6 @@ class Hyperopt(Backtesting):
|
|||||||
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
||||||
return arg_dict
|
return arg_dict
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
|
||||||
macd = ta.MACD(dataframe)
|
|
||||||
dataframe['macd'] = macd['macd']
|
|
||||||
dataframe['macdsignal'] = macd['macdsignal']
|
|
||||||
dataframe['mfi'] = ta.MFI(dataframe)
|
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
# Bollinger bands
|
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
|
||||||
dataframe['sar'] = ta.SAR(dataframe)
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def save_trials(self) -> None:
|
def save_trials(self) -> None:
|
||||||
"""
|
"""
|
||||||
Save hyperopt trials to file
|
Save hyperopt trials to file
|
||||||
@ -121,7 +105,8 @@ class Hyperopt(Backtesting):
|
|||||||
best_result['params']
|
best_result['params']
|
||||||
)
|
)
|
||||||
if 'roi_t1' in best_result['params']:
|
if 'roi_t1' in best_result['params']:
|
||||||
logger.info('ROI table:\n%s', self.generate_roi_table(best_result['params']))
|
logger.info('ROI table:\n%s',
|
||||||
|
self.custom_hyperopt.generate_roi_table(best_result['params']))
|
||||||
|
|
||||||
def log_results(self, results) -> None:
|
def log_results(self, results) -> None:
|
||||||
"""
|
"""
|
||||||
@ -149,59 +134,6 @@ class Hyperopt(Backtesting):
|
|||||||
result = trade_loss + profit_loss + duration_loss
|
result = trade_loss + profit_loss + duration_loss
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
||||||
"""
|
|
||||||
Generate the ROI table that will be used by Hyperopt
|
|
||||||
"""
|
|
||||||
roi_table = {}
|
|
||||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
||||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
||||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
||||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
||||||
|
|
||||||
return roi_table
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def roi_space() -> List[Dimension]:
|
|
||||||
"""
|
|
||||||
Values to search for each ROI steps
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
Integer(10, 120, name='roi_t1'),
|
|
||||||
Integer(10, 60, name='roi_t2'),
|
|
||||||
Integer(10, 40, name='roi_t3'),
|
|
||||||
Real(0.01, 0.04, name='roi_p1'),
|
|
||||||
Real(0.01, 0.07, name='roi_p2'),
|
|
||||||
Real(0.01, 0.20, name='roi_p3'),
|
|
||||||
]
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def stoploss_space() -> List[Dimension]:
|
|
||||||
"""
|
|
||||||
Stoploss search space
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
Real(-0.5, -0.02, name='stoploss'),
|
|
||||||
]
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def indicator_space() -> List[Dimension]:
|
|
||||||
"""
|
|
||||||
Define your Hyperopt space for searching strategy parameters
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
Integer(10, 25, name='mfi-value'),
|
|
||||||
Integer(15, 45, name='fastd-value'),
|
|
||||||
Integer(20, 50, name='adx-value'),
|
|
||||||
Integer(20, 40, name='rsi-value'),
|
|
||||||
Categorical([True, False], name='mfi-enabled'),
|
|
||||||
Categorical([True, False], name='fastd-enabled'),
|
|
||||||
Categorical([True, False], name='adx-enabled'),
|
|
||||||
Categorical([True, False], name='rsi-enabled'),
|
|
||||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
|
||||||
]
|
|
||||||
|
|
||||||
def has_space(self, space: str) -> bool:
|
def has_space(self, space: str) -> bool:
|
||||||
"""
|
"""
|
||||||
Tell if a space value is contained in the configuration
|
Tell if a space value is contained in the configuration
|
||||||
@ -216,61 +148,20 @@ class Hyperopt(Backtesting):
|
|||||||
"""
|
"""
|
||||||
spaces: List[Dimension] = []
|
spaces: List[Dimension] = []
|
||||||
if self.has_space('buy'):
|
if self.has_space('buy'):
|
||||||
spaces += Hyperopt.indicator_space()
|
spaces += self.custom_hyperopt.indicator_space()
|
||||||
if self.has_space('roi'):
|
if self.has_space('roi'):
|
||||||
spaces += Hyperopt.roi_space()
|
spaces += self.custom_hyperopt.roi_space()
|
||||||
if self.has_space('stoploss'):
|
if self.has_space('stoploss'):
|
||||||
spaces += Hyperopt.stoploss_space()
|
spaces += self.custom_hyperopt.stoploss_space()
|
||||||
return spaces
|
return spaces
|
||||||
|
|
||||||
@staticmethod
|
def generate_optimizer(self, _params: Dict) -> Dict:
|
||||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
||||||
"""
|
|
||||||
Define the buy strategy parameters to be used by hyperopt
|
|
||||||
"""
|
|
||||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
"""
|
|
||||||
Buy strategy Hyperopt will build and use
|
|
||||||
"""
|
|
||||||
conditions = []
|
|
||||||
# GUARDS AND TRENDS
|
|
||||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
|
||||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
|
||||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
|
||||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
|
||||||
if 'adx-enabled' in params and params['adx-enabled']:
|
|
||||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
|
||||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
|
||||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
|
||||||
|
|
||||||
# TRIGGERS
|
|
||||||
if params['trigger'] == 'bb_lower':
|
|
||||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
|
||||||
if params['trigger'] == 'macd_cross_signal':
|
|
||||||
conditions.append(qtpylib.crossed_above(
|
|
||||||
dataframe['macd'], dataframe['macdsignal']
|
|
||||||
))
|
|
||||||
if params['trigger'] == 'sar_reversal':
|
|
||||||
conditions.append(qtpylib.crossed_above(
|
|
||||||
dataframe['close'], dataframe['sar']
|
|
||||||
))
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
reduce(lambda x, y: x & y, conditions),
|
|
||||||
'buy'] = 1
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
return populate_buy_trend
|
|
||||||
|
|
||||||
def generate_optimizer(self, _params) -> Dict:
|
|
||||||
params = self.get_args(_params)
|
params = self.get_args(_params)
|
||||||
|
|
||||||
if self.has_space('roi'):
|
if self.has_space('roi'):
|
||||||
self.strategy.minimal_roi = self.generate_roi_table(params)
|
self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
|
||||||
|
|
||||||
if self.has_space('buy'):
|
if self.has_space('buy'):
|
||||||
self.advise_buy = self.buy_strategy_generator(params)
|
self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
|
||||||
|
|
||||||
if self.has_space('stoploss'):
|
if self.has_space('stoploss'):
|
||||||
self.strategy.stoploss = params['stoploss']
|
self.strategy.stoploss = params['stoploss']
|
||||||
@ -329,7 +220,8 @@ class Hyperopt(Backtesting):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def run_optimizer_parallel(self, parallel, asked) -> List:
|
def run_optimizer_parallel(self, parallel, asked) -> List:
|
||||||
return parallel(delayed(self.generate_optimizer)(v) for v in asked)
|
return parallel(delayed(
|
||||||
|
wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked)
|
||||||
|
|
||||||
def load_previous_results(self):
|
def load_previous_results(self):
|
||||||
""" read trials file if we have one """
|
""" read trials file if we have one """
|
||||||
@ -351,7 +243,8 @@ class Hyperopt(Backtesting):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if self.has_space('buy'):
|
if self.has_space('buy'):
|
||||||
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
|
self.strategy.advise_indicators = \
|
||||||
|
self.custom_hyperopt.populate_indicators # type: ignore
|
||||||
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
||||||
self.exchange = None # type: ignore
|
self.exchange = None # type: ignore
|
||||||
self.load_previous_results()
|
self.load_previous_results()
|
||||||
|
66
freqtrade/optimize/hyperopt_interface.py
Normal file
66
freqtrade/optimize/hyperopt_interface.py
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
"""
|
||||||
|
IHyperOpt interface
|
||||||
|
This module defines the interface to apply for hyperopts
|
||||||
|
"""
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from typing import Dict, Any, Callable, List
|
||||||
|
|
||||||
|
from pandas import DataFrame
|
||||||
|
from skopt.space import Dimension
|
||||||
|
|
||||||
|
|
||||||
|
class IHyperOpt(ABC):
|
||||||
|
"""
|
||||||
|
Interface for freqtrade hyperopts
|
||||||
|
Defines the mandatory structure must follow any custom strategies
|
||||||
|
|
||||||
|
Attributes you can use:
|
||||||
|
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
||||||
|
stoploss -> float: optimal stoploss designed for the strategy
|
||||||
|
ticker_interval -> int: value of the ticker interval to use for the strategy
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@abstractmethod
|
||||||
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Populate indicators that will be used in the Buy and Sell strategy
|
||||||
|
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||||
|
:return: a Dataframe with all mandatory indicators for the strategies
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@abstractmethod
|
||||||
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||||
|
"""
|
||||||
|
Create a buy strategy generator
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@abstractmethod
|
||||||
|
def indicator_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Create an indicator space
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@abstractmethod
|
||||||
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||||
|
"""
|
||||||
|
Create an roi table
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@abstractmethod
|
||||||
|
def stoploss_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Create a stoploss space
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@abstractmethod
|
||||||
|
def roi_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Create a roi space
|
||||||
|
"""
|
104
freqtrade/optimize/hyperopt_resolver.py
Normal file
104
freqtrade/optimize/hyperopt_resolver.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
# pragma pylint: disable=attribute-defined-outside-init
|
||||||
|
|
||||||
|
"""
|
||||||
|
This module load custom hyperopts
|
||||||
|
"""
|
||||||
|
import importlib.util
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from typing import Optional, Dict, Type
|
||||||
|
|
||||||
|
from freqtrade.constants import DEFAULT_HYPEROPT
|
||||||
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class HyperOptResolver(object):
|
||||||
|
"""
|
||||||
|
This class contains all the logic to load custom hyperopt class
|
||||||
|
"""
|
||||||
|
|
||||||
|
__slots__ = ['hyperopt']
|
||||||
|
|
||||||
|
def __init__(self, config: Optional[Dict] = None) -> None:
|
||||||
|
"""
|
||||||
|
Load the custom class from config parameter
|
||||||
|
:param config: configuration dictionary or None
|
||||||
|
"""
|
||||||
|
config = config or {}
|
||||||
|
|
||||||
|
# Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt
|
||||||
|
hyperopt_name = config.get('hyperopt') or DEFAULT_HYPEROPT
|
||||||
|
self.hyperopt = self._load_hyperopt(hyperopt_name, extra_dir=config.get('hyperopt_path'))
|
||||||
|
|
||||||
|
def _load_hyperopt(
|
||||||
|
self, hyperopt_name: str, extra_dir: Optional[str] = None) -> IHyperOpt:
|
||||||
|
"""
|
||||||
|
Search and loads the specified hyperopt.
|
||||||
|
:param hyperopt_name: name of the module to import
|
||||||
|
:param extra_dir: additional directory to search for the given hyperopt
|
||||||
|
:return: HyperOpt instance or None
|
||||||
|
"""
|
||||||
|
current_path = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
abs_paths = [
|
||||||
|
os.path.join(current_path, '..', '..', 'user_data', 'hyperopts'),
|
||||||
|
current_path,
|
||||||
|
]
|
||||||
|
|
||||||
|
if extra_dir:
|
||||||
|
# Add extra hyperopt directory on top of search paths
|
||||||
|
abs_paths.insert(0, extra_dir)
|
||||||
|
|
||||||
|
for path in abs_paths:
|
||||||
|
hyperopt = self._search_hyperopt(path, hyperopt_name)
|
||||||
|
if hyperopt:
|
||||||
|
logger.info('Using resolved hyperopt %s from \'%s\'', hyperopt_name, path)
|
||||||
|
return hyperopt
|
||||||
|
|
||||||
|
raise ImportError(
|
||||||
|
"Impossible to load Hyperopt '{}'. This class does not exist"
|
||||||
|
" or contains Python code errors".format(hyperopt_name)
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _get_valid_hyperopts(module_path: str, hyperopt_name: str) -> Optional[Type[IHyperOpt]]:
|
||||||
|
"""
|
||||||
|
Returns a list of all possible hyperopts for the given module_path
|
||||||
|
:param module_path: absolute path to the module
|
||||||
|
:param hyperopt_name: Class name of the hyperopt
|
||||||
|
:return: Tuple with (name, class) or None
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Generate spec based on absolute path
|
||||||
|
spec = importlib.util.spec_from_file_location('user_data.hyperopts', module_path)
|
||||||
|
module = importlib.util.module_from_spec(spec)
|
||||||
|
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
|
||||||
|
|
||||||
|
valid_hyperopts_gen = (
|
||||||
|
obj for name, obj in inspect.getmembers(module, inspect.isclass)
|
||||||
|
if hyperopt_name == name and IHyperOpt in obj.__bases__
|
||||||
|
)
|
||||||
|
return next(valid_hyperopts_gen, None)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _search_hyperopt(directory: str, hyperopt_name: str) -> Optional[IHyperOpt]:
|
||||||
|
"""
|
||||||
|
Search for the hyperopt_name in the given directory
|
||||||
|
:param directory: relative or absolute directory path
|
||||||
|
:return: name of the hyperopt class
|
||||||
|
"""
|
||||||
|
logger.debug('Searching for hyperopt %s in \'%s\'', hyperopt_name, directory)
|
||||||
|
for entry in os.listdir(directory):
|
||||||
|
# Only consider python files
|
||||||
|
if not entry.endswith('.py'):
|
||||||
|
logger.debug('Ignoring %s', entry)
|
||||||
|
continue
|
||||||
|
hyperopt = HyperOptResolver._get_valid_hyperopts(
|
||||||
|
os.path.abspath(os.path.join(directory, entry)), hyperopt_name
|
||||||
|
)
|
||||||
|
if hyperopt:
|
||||||
|
return hyperopt()
|
||||||
|
return None
|
@ -175,7 +175,7 @@ def test_roi_table_generation(hyperopt) -> None:
|
|||||||
'roi_p3': 3,
|
'roi_p3': 3,
|
||||||
}
|
}
|
||||||
|
|
||||||
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||||
|
|
||||||
|
|
||||||
def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
|
def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
|
||||||
@ -243,7 +243,8 @@ def test_populate_indicators(hyperopt) -> None:
|
|||||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||||
tickerlist = {'UNITTEST/BTC': tick}
|
tickerlist = {'UNITTEST/BTC': tick}
|
||||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||||
|
{'pair': 'UNITTEST/BTC'})
|
||||||
|
|
||||||
# Check if some indicators are generated. We will not test all of them
|
# Check if some indicators are generated. We will not test all of them
|
||||||
assert 'adx' in dataframe
|
assert 'adx' in dataframe
|
||||||
@ -255,9 +256,10 @@ def test_buy_strategy_generator(hyperopt) -> None:
|
|||||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||||
tickerlist = {'UNITTEST/BTC': tick}
|
tickerlist = {'UNITTEST/BTC': tick}
|
||||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||||
|
{'pair': 'UNITTEST/BTC'})
|
||||||
|
|
||||||
populate_buy_trend = hyperopt.buy_strategy_generator(
|
populate_buy_trend = hyperopt.custom_hyperopt.buy_strategy_generator(
|
||||||
{
|
{
|
||||||
'adx-value': 20,
|
'adx-value': 20,
|
||||||
'fastd-value': 20,
|
'fastd-value': 20,
|
||||||
|
@ -8,6 +8,7 @@ urllib3==1.24.1
|
|||||||
wrapt==1.10.11
|
wrapt==1.10.11
|
||||||
pandas==0.23.4
|
pandas==0.23.4
|
||||||
scikit-learn==0.20.0
|
scikit-learn==0.20.0
|
||||||
|
joblib==0.13.0
|
||||||
scipy==1.1.0
|
scipy==1.1.0
|
||||||
jsonschema==2.6.0
|
jsonschema==2.6.0
|
||||||
numpy==1.15.4
|
numpy==1.15.4
|
||||||
|
1
setup.py
1
setup.py
@ -31,6 +31,7 @@ setup(name='freqtrade',
|
|||||||
'pandas',
|
'pandas',
|
||||||
'scikit-learn',
|
'scikit-learn',
|
||||||
'scipy',
|
'scipy',
|
||||||
|
'joblib',
|
||||||
'jsonschema',
|
'jsonschema',
|
||||||
'TA-Lib',
|
'TA-Lib',
|
||||||
'tabulate',
|
'tabulate',
|
||||||
|
0
user_data/hyperopts/__init__.py
Normal file
0
user_data/hyperopts/__init__.py
Normal file
139
user_data/hyperopts/sample_hyperopt.py
Normal file
139
user_data/hyperopts/sample_hyperopt.py
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||||
|
|
||||||
|
import talib.abstract as ta
|
||||||
|
from pandas import DataFrame
|
||||||
|
from typing import Dict, Any, Callable, List
|
||||||
|
from functools import reduce
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
from skopt.space import Categorical, Dimension, Integer, Real
|
||||||
|
|
||||||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||||
|
|
||||||
|
class_name = 'SampleHyperOpts'
|
||||||
|
|
||||||
|
|
||||||
|
# This class is a sample. Feel free to customize it.
|
||||||
|
class SampleHyperOpts(IHyperOpt):
|
||||||
|
"""
|
||||||
|
This is a test hyperopt to inspire you.
|
||||||
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
||||||
|
You can:
|
||||||
|
- Rename the class name (Do not forget to update class_name)
|
||||||
|
- Add any methods you want to build your hyperopt
|
||||||
|
- Add any lib you need to build your hyperopt
|
||||||
|
You must keep:
|
||||||
|
- the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
|
||||||
|
roi_space, generate_roi_table, stoploss_space
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
macd = ta.MACD(dataframe)
|
||||||
|
dataframe['macd'] = macd['macd']
|
||||||
|
dataframe['macdsignal'] = macd['macdsignal']
|
||||||
|
dataframe['mfi'] = ta.MFI(dataframe)
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||||
|
# Bollinger bands
|
||||||
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
|
dataframe['sar'] = ta.SAR(dataframe)
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||||
|
"""
|
||||||
|
Define the buy strategy parameters to be used by hyperopt
|
||||||
|
"""
|
||||||
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Buy strategy Hyperopt will build and use
|
||||||
|
"""
|
||||||
|
conditions = []
|
||||||
|
# GUARDS AND TRENDS
|
||||||
|
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||||
|
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||||
|
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||||
|
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||||
|
if 'adx-enabled' in params and params['adx-enabled']:
|
||||||
|
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||||
|
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||||
|
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||||
|
|
||||||
|
# TRIGGERS
|
||||||
|
if params['trigger'] == 'bb_lower':
|
||||||
|
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||||
|
if params['trigger'] == 'macd_cross_signal':
|
||||||
|
conditions.append(qtpylib.crossed_above(
|
||||||
|
dataframe['macd'], dataframe['macdsignal']
|
||||||
|
))
|
||||||
|
if params['trigger'] == 'sar_reversal':
|
||||||
|
conditions.append(qtpylib.crossed_above(
|
||||||
|
dataframe['close'], dataframe['sar']
|
||||||
|
))
|
||||||
|
|
||||||
|
dataframe.loc[
|
||||||
|
reduce(lambda x, y: x & y, conditions),
|
||||||
|
'buy'] = 1
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
return populate_buy_trend
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def indicator_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Define your Hyperopt space for searching strategy parameters
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
Integer(10, 25, name='mfi-value'),
|
||||||
|
Integer(15, 45, name='fastd-value'),
|
||||||
|
Integer(20, 50, name='adx-value'),
|
||||||
|
Integer(20, 40, name='rsi-value'),
|
||||||
|
Categorical([True, False], name='mfi-enabled'),
|
||||||
|
Categorical([True, False], name='fastd-enabled'),
|
||||||
|
Categorical([True, False], name='adx-enabled'),
|
||||||
|
Categorical([True, False], name='rsi-enabled'),
|
||||||
|
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||||
|
]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||||
|
"""
|
||||||
|
Generate the ROI table that will be used by Hyperopt
|
||||||
|
"""
|
||||||
|
roi_table = {}
|
||||||
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||||
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||||
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||||
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||||
|
|
||||||
|
return roi_table
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def stoploss_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Stoploss Value to search
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
Real(-0.5, -0.02, name='stoploss'),
|
||||||
|
]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def roi_space() -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Values to search for each ROI steps
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
Integer(10, 120, name='roi_t1'),
|
||||||
|
Integer(10, 60, name='roi_t2'),
|
||||||
|
Integer(10, 40, name='roi_t3'),
|
||||||
|
Real(0.01, 0.04, name='roi_p1'),
|
||||||
|
Real(0.01, 0.07, name='roi_p2'),
|
||||||
|
Real(0.01, 0.20, name='roi_p3'),
|
||||||
|
]
|
Loading…
Reference in New Issue
Block a user