fix formulas and implement new metrics
This commit is contained in:
@@ -222,8 +222,8 @@ def calculate_expectancy(trades: pd.DataFrame) -> float:
|
||||
return expectancy
|
||||
|
||||
|
||||
def calculate_sortino(trades: pd.DataFrame,
|
||||
min_date: datetime, max_date: datetime) -> float:
|
||||
def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
||||
starting_balance: float) -> float:
|
||||
"""
|
||||
Calculate sortino
|
||||
:param trades: DataFrame containing trades (requires columns profit_ratio)
|
||||
@@ -232,18 +232,13 @@ def calculate_sortino(trades: pd.DataFrame,
|
||||
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
||||
return 0
|
||||
|
||||
total_profit = trades["profit_ratio"]
|
||||
days_period = (max_date - min_date).days
|
||||
total_profit = trades['profit_abs'] / starting_balance
|
||||
days_period = max(1, (max_date - min_date).days)
|
||||
|
||||
if days_period == 0:
|
||||
return 0
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
# total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
|
||||
trades['downside_returns'] = 0
|
||||
trades.loc[total_profit < 0, 'downside_returns'] = trades['profit_ratio']
|
||||
trades.loc[total_profit < 0, 'downside_returns'] = (trades['profit_abs'] / starting_balance)
|
||||
down_stdev = np.std(trades['downside_returns'])
|
||||
|
||||
if down_stdev != 0:
|
||||
@@ -256,8 +251,8 @@ def calculate_sortino(trades: pd.DataFrame,
|
||||
return sortino_ratio
|
||||
|
||||
|
||||
def calculate_sharpe(trades: pd.DataFrame,
|
||||
min_date: datetime, max_date: datetime) -> float:
|
||||
def calculate_sharpe(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
||||
starting_balance: float) -> float:
|
||||
"""
|
||||
Calculate sharpe
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
||||
@@ -266,14 +261,9 @@ def calculate_sharpe(trades: pd.DataFrame,
|
||||
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
||||
return 0
|
||||
|
||||
total_profit = trades["profit_ratio"]
|
||||
days_period = (max_date - min_date).days
|
||||
total_profit = trades['profit_abs'] / starting_balance
|
||||
days_period = max(1, (max_date - min_date).days)
|
||||
|
||||
if days_period == 0:
|
||||
return 0
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
# total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
up_stdev = np.std(total_profit)
|
||||
|
||||
|
Reference in New Issue
Block a user