fix bug for target_mean/std array merging in backtesting
This commit is contained in:
parent
ff531c416f
commit
6193205012
@ -1,7 +1,7 @@
|
||||
{
|
||||
"max_open_trades": 1,
|
||||
"stake_currency": "USDT",
|
||||
"stake_amount": 800,
|
||||
"stake_amount": 900,
|
||||
"tradable_balance_ratio": 1,
|
||||
"fiat_display_currency": "USD",
|
||||
"dry_run": true,
|
||||
@ -24,8 +24,7 @@
|
||||
"rateLimit": 200
|
||||
},
|
||||
"pair_whitelist": [
|
||||
"BTC/USDT",
|
||||
"ETH/USDT"
|
||||
"BTC/USDT"
|
||||
],
|
||||
"pair_blacklist": []
|
||||
},
|
||||
@ -55,7 +54,7 @@
|
||||
"15m"
|
||||
],
|
||||
"train_period": 30,
|
||||
"backtest_period": 10,
|
||||
"backtest_period": 7,
|
||||
"identifier": "example",
|
||||
"live_trained_timestamp": 0,
|
||||
"corr_pairlist": [
|
||||
@ -64,16 +63,16 @@
|
||||
"DOT/USDT"
|
||||
],
|
||||
"feature_parameters": {
|
||||
"period": 12,
|
||||
"period": 24,
|
||||
"shift": 1,
|
||||
"DI_threshold": 1,
|
||||
"weight_factor": 0,
|
||||
"DI_threshold": 0,
|
||||
"weight_factor": 0.9,
|
||||
"principal_component_analysis": false,
|
||||
"use_SVM_to_remove_outliers": false,
|
||||
"stratify": 0
|
||||
"use_SVM_to_remove_outliers": true,
|
||||
"stratify": 3
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0.25,
|
||||
"test_size": 0.33,
|
||||
"random_state": 1
|
||||
},
|
||||
"model_training_parameters": {
|
||||
|
104
docs/freqai.md
104
docs/freqai.md
@ -221,33 +221,43 @@ This way, the user can return to using any model they wish by simply changing th
|
||||
|
||||
### Building a freqai strategy
|
||||
|
||||
The Freqai strategy requires the user to include the following lines of code in `populate_ any _indicators()`
|
||||
The Freqai strategy requires the user to include the following lines of code in the strategy:
|
||||
|
||||
```python
|
||||
from freqtrade.freqai.strategy_bridge import CustomModel
|
||||
from freqtrade.freqai.strategy_bridge import CustomModel
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# the configuration file parameters are stored here
|
||||
self.freqai_info = self.config['freqai']
|
||||
def informative_pairs(self):
|
||||
whitelist_pairs = self.dp.current_whitelist()
|
||||
corr_pairs = self.config["freqai"]["corr_pairlist"]
|
||||
informative_pairs = []
|
||||
for tf in self.config["freqai"]["timeframes"]:
|
||||
for pair in whitelist_pairs:
|
||||
informative_pairs.append((pair, tf))
|
||||
for pair in corr_pairs:
|
||||
if pair in whitelist_pairs:
|
||||
continue # avoid duplication
|
||||
informative_pairs.append((pair, tf))
|
||||
return informative_pairs
|
||||
|
||||
# the model is instantiated here
|
||||
self.model = CustomModel(self.config)
|
||||
def bot_start(self):
|
||||
self.model = CustomModel(self.config)
|
||||
|
||||
print('Populating indicators...')
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
self.freqai_info = self.config['freqai']
|
||||
|
||||
# the following loops are necessary for building the features
|
||||
# indicated by the user in the configuration file.
|
||||
for tf in self.freqai_info['timeframes']:
|
||||
for i in self.freqai_info['corr_pairlist']:
|
||||
dataframe = self.populate_any_indicators(i,
|
||||
dataframe.copy(), tf, coin=i.split("/")[0]+'-')
|
||||
# the following loops are necessary for building the features
|
||||
# indicated by the user in the configuration file.
|
||||
for tf in self.freqai_info['timeframes']:
|
||||
for i in self.freqai_info['corr_pairlist']:
|
||||
dataframe = self.populate_any_indicators(i,
|
||||
dataframe.copy(), tf, coin=i.split("/")[0]+'-')
|
||||
|
||||
# the model will return 4 values, its prediction, an indication of whether or not the prediction
|
||||
# should be accepted, the target mean/std values from the labels used during each training period.
|
||||
(dataframe['prediction'], dataframe['do_predict'],
|
||||
dataframe['target_mean'], dataframe['target_std']) = self.model.bridge.start(dataframe, metadata)
|
||||
# the model will return 4 values, its prediction, an indication of whether or not the prediction
|
||||
# should be accepted, the target mean/std values from the labels used during each training period.
|
||||
(dataframe['prediction'], dataframe['do_predict'],
|
||||
dataframe['target_mean'], dataframe['target_std']) = self.model.bridge.start(dataframe, metadata)
|
||||
|
||||
return dataframe
|
||||
return dataframe
|
||||
```
|
||||
|
||||
The user should also include `populate_any_indicators()` from `templates/FreqaiExampleStrategy.py` which builds
|
||||
@ -314,7 +324,7 @@ data point and all other training data points:
|
||||
|
||||
$$ d_{ab} = \sqrt{\sum_{j=1}^p(X_{a,j}-X_{b,j})^2} $$
|
||||
|
||||
where $d_{ab}$ is the distance between the standardized points $a$ and $b$. $p$
|
||||
where $d_{ab}$ is the distance between the normalized points $a$ and $b$. $p$
|
||||
is the number of features i.e. the length of the vector $X$. The
|
||||
characteristic distance, $\overline{d}$ for a set of training data points is simply the mean
|
||||
of the average distances:
|
||||
@ -394,11 +404,61 @@ which will split the data chronolocially so that every X data points is a testin
|
||||
present example, the user is asking for every third data point in the dataframe to be used for
|
||||
testing, the other points are used for training.
|
||||
|
||||
<!-- ## Dynamic target expectation
|
||||
|
||||
The labels used for model training have a unique statistical distribution for each separate model training.
|
||||
We can use this information to know if our current prediction is in the realm of what the model was trained on,
|
||||
and if so, what is the statistical probability of the current prediction. With this information, we can
|
||||
make more informed prediction._
|
||||
FreqAI builds this label distribution and provides a quantile to the strategy, which can be optionally used as a
|
||||
dynamic threshold. The `target_quantile: X` means that X% of the labels are below this value. So setting:
|
||||
|
||||
```json
|
||||
"freqai": {
|
||||
"feature_parameters" : {
|
||||
"target_quantile": 0.9
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Means the user will get back in the strategy the label threshold at which 90% of the labels were
|
||||
below this value. An example usage in the strategy may look something like:
|
||||
|
||||
```python
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
# ... #
|
||||
|
||||
(
|
||||
dataframe["prediction"],
|
||||
dataframe["do_predict"],
|
||||
dataframe["target_upper_quantile"],
|
||||
dataframe["target_lower_quantile"],
|
||||
) = self.model.bridge.start(dataframe, metadata, self)
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
buy_conditions = [
|
||||
(dataframe["prediction"] > dataframe["target_upper_quantile"]) & (dataframe["do_predict"] == 1)
|
||||
]
|
||||
|
||||
if buy_conditions:
|
||||
dataframe.loc[reduce(lambda x, y: x | y, buy_conditions), "buy"] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
``` -->
|
||||
|
||||
|
||||
|
||||
## Additional information
|
||||
|
||||
### Feature standardization
|
||||
### Feature normalization
|
||||
|
||||
The feature set created by the user is automatically standardized to the training
|
||||
The feature set created by the user is automatically normalized to the training
|
||||
data only. This includes all test data and unseen prediction data (dry/live/backtest).
|
||||
|
||||
### File structure
|
||||
|
@ -141,9 +141,9 @@ class FreqaiDataKitchen:
|
||||
:model: User trained model which can be inferenced for new predictions
|
||||
"""
|
||||
|
||||
# if self.live:
|
||||
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
|
||||
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
|
||||
if self.live:
|
||||
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
|
||||
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
|
||||
|
||||
with open(self.data_path / str(self.model_filename + "_metadata.json"), "r") as fp:
|
||||
self.data = json.load(fp)
|
||||
@ -329,42 +329,6 @@ class FreqaiDataKitchen:
|
||||
:data_dictionary: updated dictionary with standardized values.
|
||||
"""
|
||||
# standardize the data by training stats
|
||||
train_mean = data_dictionary["train_features"].mean()
|
||||
train_std = data_dictionary["train_features"].std()
|
||||
data_dictionary["train_features"] = (
|
||||
data_dictionary["train_features"] - train_mean
|
||||
) / train_std
|
||||
data_dictionary["test_features"] = (
|
||||
data_dictionary["test_features"] - train_mean
|
||||
) / train_std
|
||||
|
||||
train_labels_std = data_dictionary["train_labels"].std()
|
||||
train_labels_mean = data_dictionary["train_labels"].mean()
|
||||
data_dictionary["train_labels"] = (
|
||||
data_dictionary["train_labels"] - train_labels_mean
|
||||
) / train_labels_std
|
||||
data_dictionary["test_labels"] = (
|
||||
data_dictionary["test_labels"] - train_labels_mean
|
||||
) / train_labels_std
|
||||
|
||||
for item in train_std.keys():
|
||||
self.data[item + "_std"] = train_std[item]
|
||||
self.data[item + "_mean"] = train_mean[item]
|
||||
|
||||
self.data["labels_std"] = train_labels_std
|
||||
self.data["labels_mean"] = train_labels_mean
|
||||
|
||||
return data_dictionary
|
||||
|
||||
def standardize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
|
||||
"""
|
||||
Standardize all data in the data_dictionary according to the training dataset
|
||||
:params:
|
||||
:data_dictionary: dictionary containing the cleaned and split training/test data/labels
|
||||
:returns:
|
||||
:data_dictionary: updated dictionary with standardized values.
|
||||
"""
|
||||
# standardize the data by training stats
|
||||
train_max = data_dictionary["train_features"].max()
|
||||
train_min = data_dictionary["train_features"].min()
|
||||
data_dictionary["train_features"] = 2 * (
|
||||
@ -392,9 +356,9 @@ class FreqaiDataKitchen:
|
||||
|
||||
return data_dictionary
|
||||
|
||||
def standardize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Standardizes a set of data using the mean and standard deviation from
|
||||
Normalize a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:params:
|
||||
:df: Dataframe to be standardized
|
||||
@ -406,19 +370,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
return df
|
||||
|
||||
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Normalizes a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:params:
|
||||
:df: Dataframe to be standardized
|
||||
"""
|
||||
|
||||
for item in df.keys():
|
||||
df[item] = (df[item] - self.data[item + "_mean"]) / self.data[item + "_std"]
|
||||
|
||||
return df
|
||||
|
||||
def split_timerange(
|
||||
self, tr: str, train_split: int = 28, bt_split: int = 7
|
||||
) -> Tuple[list, list]:
|
||||
@ -657,12 +608,12 @@ class FreqaiDataKitchen:
|
||||
"""
|
||||
|
||||
ones = np.ones(len_dataframe)
|
||||
s_mean, s_std = ones * self.data["s_mean"], ones * self.data["s_std"]
|
||||
target_mean, target_std = ones * self.data["target_mean"], ones * self.data["target_std"]
|
||||
|
||||
self.full_predictions = np.append(self.full_predictions, predictions)
|
||||
self.full_do_predict = np.append(self.full_do_predict, do_predict)
|
||||
self.full_target_mean = np.append(self.full_target_mean, s_mean)
|
||||
self.full_target_std = np.append(self.full_target_std, s_std)
|
||||
self.full_target_mean = np.append(self.full_target_mean, target_mean)
|
||||
self.full_target_std = np.append(self.full_target_std, target_std)
|
||||
|
||||
return
|
||||
|
||||
@ -827,6 +778,23 @@ class FreqaiDataKitchen:
|
||||
|
||||
return dataframe
|
||||
|
||||
def fit_labels(self) -> None:
|
||||
import scipy as spy
|
||||
|
||||
f = spy.stats.norm.fit(self.data_dictionary["train_labels"])
|
||||
|
||||
# KEEPME incase we want to let user start to grab quantiles.
|
||||
# upper_q = spy.stats.norm.ppf(self.freqai_config['feature_parameters'][
|
||||
# 'target_quantile'], *f)
|
||||
# lower_q = spy.stats.norm.ppf(1 - self.freqai_config['feature_parameters'][
|
||||
# 'target_quantile'], *f)
|
||||
|
||||
self.data["target_mean"], self.data["target_std"] = f[0], f[1]
|
||||
# self.data["upper_quantile"] = upper_q
|
||||
# self.data["lower_quantile"] = lower_q
|
||||
|
||||
return
|
||||
|
||||
def np_encoder(self, object):
|
||||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
@ -968,3 +936,52 @@ class FreqaiDataKitchen:
|
||||
# )
|
||||
|
||||
# return
|
||||
|
||||
# def standardize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
|
||||
# """
|
||||
# standardize all data in the data_dictionary according to the training dataset
|
||||
# :params:
|
||||
# :data_dictionary: dictionary containing the cleaned and split training/test data/labels
|
||||
# :returns:
|
||||
# :data_dictionary: updated dictionary with standardized values.
|
||||
# """
|
||||
# # standardize the data by training stats
|
||||
# train_mean = data_dictionary["train_features"].mean()
|
||||
# train_std = data_dictionary["train_features"].std()
|
||||
# data_dictionary["train_features"] = (
|
||||
# data_dictionary["train_features"] - train_mean
|
||||
# ) / train_std
|
||||
# data_dictionary["test_features"] = (
|
||||
# data_dictionary["test_features"] - train_mean
|
||||
# ) / train_std
|
||||
|
||||
# train_labels_std = data_dictionary["train_labels"].std()
|
||||
# train_labels_mean = data_dictionary["train_labels"].mean()
|
||||
# data_dictionary["train_labels"] = (
|
||||
# data_dictionary["train_labels"] - train_labels_mean
|
||||
# ) / train_labels_std
|
||||
# data_dictionary["test_labels"] = (
|
||||
# data_dictionary["test_labels"] - train_labels_mean
|
||||
# ) / train_labels_std
|
||||
|
||||
# for item in train_std.keys():
|
||||
# self.data[item + "_std"] = train_std[item]
|
||||
# self.data[item + "_mean"] = train_mean[item]
|
||||
|
||||
# self.data["labels_std"] = train_labels_std
|
||||
# self.data["labels_mean"] = train_labels_mean
|
||||
|
||||
# return data_dictionary
|
||||
|
||||
# def standardize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
# """
|
||||
# Normalizes a set of data using the mean and standard deviation from
|
||||
# the associated training data.
|
||||
# :params:
|
||||
# :df: Dataframe to be standardized
|
||||
# """
|
||||
|
||||
# for item in df.keys():
|
||||
# df[item] = (df[item] - self.data[item + "_mean"]) / self.data[item + "_std"]
|
||||
|
||||
# return df
|
||||
|
@ -158,12 +158,7 @@ class IFreqaiModel(ABC):
|
||||
else:
|
||||
self.model = dh.load_data(metadata['pair'])
|
||||
|
||||
# strategy_provided_features = self.dh.find_features(dataframe_train)
|
||||
# # FIXME doesnt work with PCA
|
||||
# if strategy_provided_features != self.dh.training_features_list:
|
||||
# logger.info("User changed input features, retraining model.")
|
||||
# self.model = self.train(dataframe_train, metadata)
|
||||
# self.dh.save_data(self.model)
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dh)
|
||||
|
||||
preds, do_preds = self.predict(dataframe_backtest, dh)
|
||||
|
||||
@ -220,16 +215,23 @@ class IFreqaiModel(ABC):
|
||||
|
||||
self.model = dh.load_data(coin=metadata['pair'])
|
||||
|
||||
# FIXME
|
||||
# strategy_provided_features = dh.find_features(dataframe)
|
||||
# if strategy_provided_features != dh.training_features_list:
|
||||
# self.train_model_in_series(new_trained_timerange, metadata, strategy)
|
||||
self.check_if_feature_list_matches_strategy(dataframe, dh)
|
||||
|
||||
preds, do_preds = self.predict(dataframe, dh)
|
||||
dh.append_predictions(preds, do_preds, len(dataframe))
|
||||
|
||||
return dh
|
||||
|
||||
def check_if_feature_list_matches_strategy(self, dataframe: DataFrame,
|
||||
dh: FreqaiDataKitchen) -> None:
|
||||
strategy_provided_features = dh.find_features(dataframe)
|
||||
if strategy_provided_features != dh.training_features_list:
|
||||
raise OperationalException("Trying to access pretrained model with `identifier` "
|
||||
"but found different features furnished by current strategy."
|
||||
"Change `identifer` to train from scratch, or ensure the"
|
||||
"strategy is furnishing the same features as the pretrained"
|
||||
"model")
|
||||
|
||||
def data_cleaning_train(self, dh: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
Base data cleaning method for train
|
||||
@ -237,6 +239,7 @@ class IFreqaiModel(ABC):
|
||||
based on user decided logic. See FreqaiDataKitchen::remove_outliers() for an example
|
||||
of how outlier data points are dropped from the dataframe used for training.
|
||||
"""
|
||||
|
||||
if self.freqai_info.get('feature_parameters', {}).get('principal_component_analysis'):
|
||||
dh.principal_component_analysis()
|
||||
|
||||
|
@ -33,10 +33,6 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
/ dataframe["close"]
|
||||
- 1
|
||||
)
|
||||
dh.data["s_mean"] = dataframe["s"].mean()
|
||||
dh.data["s_std"] = dataframe["s"].std()
|
||||
|
||||
# logger.info("label mean", dh.data["s_mean"], "label std", dh.data["s_std"])
|
||||
|
||||
return dataframe["s"]
|
||||
|
||||
@ -68,8 +64,9 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
# split data into train/test data.
|
||||
data_dictionary = dh.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
# standardize all data based on train_dataset only
|
||||
data_dictionary = dh.standardize_data(data_dictionary)
|
||||
dh.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dh.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dh)
|
||||
@ -128,7 +125,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
filtered_dataframe, _ = dh.filter_features(
|
||||
unfiltered_dataframe, original_feature_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dh.standardize_data_from_metadata(filtered_dataframe)
|
||||
filtered_dataframe = dh.normalize_data_from_metadata(filtered_dataframe)
|
||||
dh.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
@ -136,7 +133,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
predictions = self.model.predict(dh.data_dictionary["prediction_features"])
|
||||
|
||||
# compute the non-standardized predictions
|
||||
# compute the non-normalized predictions
|
||||
dh.predictions = (predictions + 1) * (dh.data["labels_max"] -
|
||||
dh.data["labels_min"]) / 2 + dh.data["labels_min"]
|
||||
|
||||
|
@ -178,8 +178,8 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
dataframe["target_std"],
|
||||
) = self.model.bridge.start(dataframe, metadata, self)
|
||||
|
||||
dataframe["target_roi"] = dataframe["target_mean"] + dataframe["target_std"] * 1.5
|
||||
dataframe["sell_roi"] = dataframe["target_mean"] - dataframe["target_std"] * 1
|
||||
dataframe["target_roi"] = dataframe["target_mean"] + dataframe["target_std"]
|
||||
dataframe["sell_roi"] = dataframe["target_mean"] - dataframe["target_std"]
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
Loading…
Reference in New Issue
Block a user