fix bug for target_mean/std array merging in backtesting
This commit is contained in:
@@ -33,10 +33,6 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
/ dataframe["close"]
|
||||
- 1
|
||||
)
|
||||
dh.data["s_mean"] = dataframe["s"].mean()
|
||||
dh.data["s_std"] = dataframe["s"].std()
|
||||
|
||||
# logger.info("label mean", dh.data["s_mean"], "label std", dh.data["s_std"])
|
||||
|
||||
return dataframe["s"]
|
||||
|
||||
@@ -68,8 +64,9 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
# split data into train/test data.
|
||||
data_dictionary = dh.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
# standardize all data based on train_dataset only
|
||||
data_dictionary = dh.standardize_data(data_dictionary)
|
||||
dh.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dh.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dh)
|
||||
@@ -128,7 +125,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
filtered_dataframe, _ = dh.filter_features(
|
||||
unfiltered_dataframe, original_feature_list, training_filter=False
|
||||
)
|
||||
filtered_dataframe = dh.standardize_data_from_metadata(filtered_dataframe)
|
||||
filtered_dataframe = dh.normalize_data_from_metadata(filtered_dataframe)
|
||||
dh.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
@@ -136,7 +133,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
||||
|
||||
predictions = self.model.predict(dh.data_dictionary["prediction_features"])
|
||||
|
||||
# compute the non-standardized predictions
|
||||
# compute the non-normalized predictions
|
||||
dh.predictions = (predictions + 1) * (dh.data["labels_max"] -
|
||||
dh.data["labels_min"]) / 2 + dh.data["labels_min"]
|
||||
|
||||
|
Reference in New Issue
Block a user