fix bug for target_mean/std array merging in backtesting
This commit is contained in:
@@ -141,9 +141,9 @@ class FreqaiDataKitchen:
|
||||
:model: User trained model which can be inferenced for new predictions
|
||||
"""
|
||||
|
||||
# if self.live:
|
||||
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
|
||||
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
|
||||
if self.live:
|
||||
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
|
||||
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
|
||||
|
||||
with open(self.data_path / str(self.model_filename + "_metadata.json"), "r") as fp:
|
||||
self.data = json.load(fp)
|
||||
@@ -329,42 +329,6 @@ class FreqaiDataKitchen:
|
||||
:data_dictionary: updated dictionary with standardized values.
|
||||
"""
|
||||
# standardize the data by training stats
|
||||
train_mean = data_dictionary["train_features"].mean()
|
||||
train_std = data_dictionary["train_features"].std()
|
||||
data_dictionary["train_features"] = (
|
||||
data_dictionary["train_features"] - train_mean
|
||||
) / train_std
|
||||
data_dictionary["test_features"] = (
|
||||
data_dictionary["test_features"] - train_mean
|
||||
) / train_std
|
||||
|
||||
train_labels_std = data_dictionary["train_labels"].std()
|
||||
train_labels_mean = data_dictionary["train_labels"].mean()
|
||||
data_dictionary["train_labels"] = (
|
||||
data_dictionary["train_labels"] - train_labels_mean
|
||||
) / train_labels_std
|
||||
data_dictionary["test_labels"] = (
|
||||
data_dictionary["test_labels"] - train_labels_mean
|
||||
) / train_labels_std
|
||||
|
||||
for item in train_std.keys():
|
||||
self.data[item + "_std"] = train_std[item]
|
||||
self.data[item + "_mean"] = train_mean[item]
|
||||
|
||||
self.data["labels_std"] = train_labels_std
|
||||
self.data["labels_mean"] = train_labels_mean
|
||||
|
||||
return data_dictionary
|
||||
|
||||
def standardize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
|
||||
"""
|
||||
Standardize all data in the data_dictionary according to the training dataset
|
||||
:params:
|
||||
:data_dictionary: dictionary containing the cleaned and split training/test data/labels
|
||||
:returns:
|
||||
:data_dictionary: updated dictionary with standardized values.
|
||||
"""
|
||||
# standardize the data by training stats
|
||||
train_max = data_dictionary["train_features"].max()
|
||||
train_min = data_dictionary["train_features"].min()
|
||||
data_dictionary["train_features"] = 2 * (
|
||||
@@ -392,9 +356,9 @@ class FreqaiDataKitchen:
|
||||
|
||||
return data_dictionary
|
||||
|
||||
def standardize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Standardizes a set of data using the mean and standard deviation from
|
||||
Normalize a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:params:
|
||||
:df: Dataframe to be standardized
|
||||
@@ -406,19 +370,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
return df
|
||||
|
||||
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Normalizes a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:params:
|
||||
:df: Dataframe to be standardized
|
||||
"""
|
||||
|
||||
for item in df.keys():
|
||||
df[item] = (df[item] - self.data[item + "_mean"]) / self.data[item + "_std"]
|
||||
|
||||
return df
|
||||
|
||||
def split_timerange(
|
||||
self, tr: str, train_split: int = 28, bt_split: int = 7
|
||||
) -> Tuple[list, list]:
|
||||
@@ -657,12 +608,12 @@ class FreqaiDataKitchen:
|
||||
"""
|
||||
|
||||
ones = np.ones(len_dataframe)
|
||||
s_mean, s_std = ones * self.data["s_mean"], ones * self.data["s_std"]
|
||||
target_mean, target_std = ones * self.data["target_mean"], ones * self.data["target_std"]
|
||||
|
||||
self.full_predictions = np.append(self.full_predictions, predictions)
|
||||
self.full_do_predict = np.append(self.full_do_predict, do_predict)
|
||||
self.full_target_mean = np.append(self.full_target_mean, s_mean)
|
||||
self.full_target_std = np.append(self.full_target_std, s_std)
|
||||
self.full_target_mean = np.append(self.full_target_mean, target_mean)
|
||||
self.full_target_std = np.append(self.full_target_std, target_std)
|
||||
|
||||
return
|
||||
|
||||
@@ -827,6 +778,23 @@ class FreqaiDataKitchen:
|
||||
|
||||
return dataframe
|
||||
|
||||
def fit_labels(self) -> None:
|
||||
import scipy as spy
|
||||
|
||||
f = spy.stats.norm.fit(self.data_dictionary["train_labels"])
|
||||
|
||||
# KEEPME incase we want to let user start to grab quantiles.
|
||||
# upper_q = spy.stats.norm.ppf(self.freqai_config['feature_parameters'][
|
||||
# 'target_quantile'], *f)
|
||||
# lower_q = spy.stats.norm.ppf(1 - self.freqai_config['feature_parameters'][
|
||||
# 'target_quantile'], *f)
|
||||
|
||||
self.data["target_mean"], self.data["target_std"] = f[0], f[1]
|
||||
# self.data["upper_quantile"] = upper_q
|
||||
# self.data["lower_quantile"] = lower_q
|
||||
|
||||
return
|
||||
|
||||
def np_encoder(self, object):
|
||||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
@@ -968,3 +936,52 @@ class FreqaiDataKitchen:
|
||||
# )
|
||||
|
||||
# return
|
||||
|
||||
# def standardize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
|
||||
# """
|
||||
# standardize all data in the data_dictionary according to the training dataset
|
||||
# :params:
|
||||
# :data_dictionary: dictionary containing the cleaned and split training/test data/labels
|
||||
# :returns:
|
||||
# :data_dictionary: updated dictionary with standardized values.
|
||||
# """
|
||||
# # standardize the data by training stats
|
||||
# train_mean = data_dictionary["train_features"].mean()
|
||||
# train_std = data_dictionary["train_features"].std()
|
||||
# data_dictionary["train_features"] = (
|
||||
# data_dictionary["train_features"] - train_mean
|
||||
# ) / train_std
|
||||
# data_dictionary["test_features"] = (
|
||||
# data_dictionary["test_features"] - train_mean
|
||||
# ) / train_std
|
||||
|
||||
# train_labels_std = data_dictionary["train_labels"].std()
|
||||
# train_labels_mean = data_dictionary["train_labels"].mean()
|
||||
# data_dictionary["train_labels"] = (
|
||||
# data_dictionary["train_labels"] - train_labels_mean
|
||||
# ) / train_labels_std
|
||||
# data_dictionary["test_labels"] = (
|
||||
# data_dictionary["test_labels"] - train_labels_mean
|
||||
# ) / train_labels_std
|
||||
|
||||
# for item in train_std.keys():
|
||||
# self.data[item + "_std"] = train_std[item]
|
||||
# self.data[item + "_mean"] = train_mean[item]
|
||||
|
||||
# self.data["labels_std"] = train_labels_std
|
||||
# self.data["labels_mean"] = train_labels_mean
|
||||
|
||||
# return data_dictionary
|
||||
|
||||
# def standardize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
# """
|
||||
# Normalizes a set of data using the mean and standard deviation from
|
||||
# the associated training data.
|
||||
# :params:
|
||||
# :df: Dataframe to be standardized
|
||||
# """
|
||||
|
||||
# for item in df.keys():
|
||||
# df[item] = (df[item] - self.data[item + "_mean"]) / self.data[item + "_std"]
|
||||
|
||||
# return df
|
||||
|
||||
Reference in New Issue
Block a user