Use dates on plot profit/dataframe
* plot_dataframe also support --timerange * Both default to tkinter as matplotlib plotting backend
This commit is contained in:
parent
f40d9dbb05
commit
6171be4f46
@ -17,6 +17,19 @@ python script/plot_dataframe.py -p BTC_ETH,BTC_LTC
|
||||
The -p pair argument, can be used to specify what
|
||||
pair you would like to plot.
|
||||
|
||||
**Advanced use**
|
||||
|
||||
To plot the current live price use the --live flag:
|
||||
```
|
||||
python scripts/plot_dataframe.py -p BTC_ETH --live
|
||||
```
|
||||
|
||||
To plot a timerange (to zoom in):
|
||||
```
|
||||
python scripts/plot_dataframe.py -p BTC_ETH --timerange=100-200
|
||||
```
|
||||
Timerange doesn't work with live data.
|
||||
|
||||
|
||||
## Plot profit
|
||||
|
||||
@ -46,3 +59,11 @@ Example
|
||||
```
|
||||
python python scripts/plot_profit.py --datadir ../freqtrade/freqtrade/tests/testdata-20171221/ -p BTC_LTC
|
||||
```
|
||||
|
||||
**When it goes wrong**
|
||||
|
||||
*** Linux: Can't display**
|
||||
|
||||
If you are inside an python environment, you might want to set the
|
||||
DISPLAY variable as so:
|
||||
$ DISPLAY=:0 python scripts/plot_dataframe.py
|
||||
|
@ -5,8 +5,10 @@ import logging
|
||||
import time
|
||||
import os
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
import numpy as np
|
||||
from jsonschema import Draft4Validator, validate
|
||||
from jsonschema.exceptions import ValidationError, best_match
|
||||
from wrapt import synchronized
|
||||
@ -16,11 +18,6 @@ from freqtrade import __version__
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def file_dump_json(filename, data):
|
||||
with open(filename, 'w') as fp:
|
||||
json.dump(data, fp)
|
||||
|
||||
|
||||
class State(enum.Enum):
|
||||
RUNNING = 0
|
||||
STOPPED = 1
|
||||
@ -30,6 +27,44 @@ class State(enum.Enum):
|
||||
_STATE = State.STOPPED
|
||||
|
||||
|
||||
############################################
|
||||
# Used by scripts #
|
||||
# Matplotlib doesn't support ::datetime64, #
|
||||
# so we need to convert it into ::datetime #
|
||||
############################################
|
||||
|
||||
def datesarray_to_datetimearray(dates):
|
||||
"""
|
||||
Convert an pandas-array of timestamps into
|
||||
An numpy-array of datetimes
|
||||
:return: numpy-array of datetime
|
||||
"""
|
||||
times = []
|
||||
dates = dates.astype(datetime)
|
||||
for i in range(0, dates.size):
|
||||
date = dates[i].to_pydatetime()
|
||||
times.append(date)
|
||||
return np.array(times)
|
||||
|
||||
|
||||
def common_datearray(dfs):
|
||||
alldates = {}
|
||||
for pair, pair_data in dfs.items():
|
||||
dates = datesarray_to_datetimearray(pair_data['date'])
|
||||
for date in dates:
|
||||
alldates[date] = 1
|
||||
lst = []
|
||||
for date, _ in alldates.items():
|
||||
lst.append(date)
|
||||
arr = np.array(lst)
|
||||
return np.sort(arr, axis=0)
|
||||
|
||||
|
||||
def file_dump_json(filename, data):
|
||||
with open(filename, 'w') as fp:
|
||||
json.dump(data, fp)
|
||||
|
||||
|
||||
@synchronized
|
||||
def update_state(state: State) -> None:
|
||||
"""
|
||||
@ -155,6 +190,15 @@ def parse_args(args: List[str], description: str):
|
||||
return parser.parse_args(args)
|
||||
|
||||
|
||||
def scripts_options(parser: argparse.ArgumentParser) -> None:
|
||||
parser.add_argument(
|
||||
'-p', '--pair',
|
||||
help='Show profits for only this pairs. Pairs are comma-separated.',
|
||||
dest='pair',
|
||||
default=None
|
||||
)
|
||||
|
||||
|
||||
def backtesting_options(parser: argparse.ArgumentParser) -> None:
|
||||
parser.add_argument(
|
||||
'-l', '--live',
|
||||
|
@ -1,23 +1,23 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
import logging
|
||||
import argparse
|
||||
import matplotlib # Install PYQT5 manually if you want to test this helper function
|
||||
matplotlib.use("Qt5Agg")
|
||||
import matplotlib
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
from freqtrade import exchange, analyze
|
||||
from freqtrade.misc import common_args_parser
|
||||
import freqtrade.misc as misc
|
||||
import freqtrade.optimize as optimize
|
||||
import freqtrade.analyze as analyze
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def plot_parse_args(args ):
|
||||
parser = common_args_parser(description='Graph utility')
|
||||
parser.add_argument(
|
||||
'-p', '--pair',
|
||||
help = 'What currency pair',
|
||||
dest = 'pair',
|
||||
default = 'BTC_ETH',
|
||||
type = str,
|
||||
)
|
||||
def plot_parse_args(args):
|
||||
parser = misc.common_args_parser('Graph dataframe')
|
||||
misc.backtesting_options(parser)
|
||||
misc.scripts_options(parser)
|
||||
return parser.parse_args(args)
|
||||
|
||||
|
||||
@ -28,11 +28,25 @@ def plot_analyzed_dataframe(args):
|
||||
:return: None
|
||||
"""
|
||||
pair = args.pair
|
||||
pairs = [pair]
|
||||
timerange = misc.parse_timerange(args.timerange)
|
||||
|
||||
# Init Bittrex to use public API
|
||||
exchange._API = exchange.Bittrex({'key': '', 'secret': ''})
|
||||
ticker = exchange.get_ticker_history(pair)
|
||||
dataframe = analyze.analyze_ticker(ticker)
|
||||
tickers = {}
|
||||
if args.live:
|
||||
logger.info('Downloading pair.')
|
||||
exchange._API = exchange.Bittrex({'key': '', 'secret': ''})
|
||||
tickers[pair] = exchange.get_ticker_history(pair, args.ticker_interval)
|
||||
else:
|
||||
tickers = optimize.load_data(args.datadir, pairs=pairs,
|
||||
ticker_interval=args.ticker_interval,
|
||||
refresh_pairs=False,
|
||||
timerange=timerange)
|
||||
dataframes = optimize.tickerdata_to_dataframe(tickers)
|
||||
dataframe = dataframes[pair]
|
||||
dataframe = analyze.populate_buy_trend(dataframe)
|
||||
dataframe = analyze.populate_sell_trend(dataframe)
|
||||
|
||||
dates = misc.datesarray_to_datetimearray(dataframe['date'])
|
||||
|
||||
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
||||
dataframe.loc[dataframe['sell'] == 1, 'sell_price'] = dataframe['close']
|
||||
@ -40,27 +54,30 @@ def plot_analyzed_dataframe(args):
|
||||
# Two subplots sharing x axis
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
||||
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
||||
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
||||
ax1.plot(dataframe.index.values, dataframe['sma'], '--', label='SMA')
|
||||
ax1.plot(dataframe.index.values, dataframe['tema'], ':', label='TEMA')
|
||||
ax1.plot(dataframe.index.values, dataframe['blower'], '-.', label='BB low')
|
||||
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
|
||||
ax1.plot(dates, dataframe['close'], label='close')
|
||||
# ax1.plot(dates, dataframe['sell'], 'ro', label='sell')
|
||||
ax1.plot(dates, dataframe['sma'], '--', label='SMA')
|
||||
ax1.plot(dates, dataframe['tema'], ':', label='TEMA')
|
||||
ax1.plot(dates, dataframe['blower'], '-.', label='BB low')
|
||||
ax1.plot(dates, dataframe['buy_price'], 'bo', label='buy')
|
||||
ax1.legend()
|
||||
|
||||
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
||||
ax2.plot(dataframe.index.values, dataframe['mfi'], label='MFI')
|
||||
# ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
||||
ax2.plot(dates, dataframe['adx'], label='ADX')
|
||||
ax2.plot(dates, dataframe['mfi'], label='MFI')
|
||||
# ax2.plot(dates, [25] * len(dataframe.index.values))
|
||||
ax2.legend()
|
||||
|
||||
ax3.plot(dataframe.index.values, dataframe['fastk'], label='k')
|
||||
ax3.plot(dataframe.index.values, dataframe['fastd'], label='d')
|
||||
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
|
||||
ax3.plot(dates, dataframe['fastk'], label='k')
|
||||
ax3.plot(dates, dataframe['fastd'], label='d')
|
||||
ax3.plot(dates, [20] * len(dataframe.index.values))
|
||||
ax3.legend()
|
||||
xfmt = mdates.DateFormatter('%d-%m-%y %H:%M') # Dont let matplotlib autoformat date
|
||||
ax3.xaxis.set_major_formatter(xfmt)
|
||||
|
||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||
# all but bottom plot.
|
||||
fig.subplots_adjust(hspace=0)
|
||||
fig.autofmt_xdate() # Rotate the dates
|
||||
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
||||
plt.show()
|
||||
|
||||
|
@ -4,24 +4,19 @@ import sys
|
||||
import argparse
|
||||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
import numpy as np
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
import freqtrade.misc as misc
|
||||
import freqtrade.exchange as exchange
|
||||
import freqtrade.analyze as analyze
|
||||
|
||||
|
||||
def plot_parse_args(args ):
|
||||
parser = misc.common_args_parser('Graph utility')
|
||||
def plot_parse_args(args):
|
||||
parser = misc.common_args_parser('Graph profits')
|
||||
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
|
||||
misc.backtesting_options(parser)
|
||||
parser.add_argument(
|
||||
'-p', '--pair',
|
||||
help = 'Show profits for only this pairs. Pairs are comma-separated.',
|
||||
dest = 'pair',
|
||||
default = None
|
||||
)
|
||||
misc.scripts_options(parser)
|
||||
return parser.parse_args(args)
|
||||
|
||||
|
||||
@ -85,23 +80,14 @@ def plot_profit(args) -> None:
|
||||
timerange=timerange)
|
||||
dataframes = optimize.preprocess(tickers)
|
||||
|
||||
# NOTE: the dataframes are of unequal length,
|
||||
# 'dates' is an merged date array of them all.
|
||||
|
||||
dates = misc.common_datearray(dataframes)
|
||||
max_x = dates.size
|
||||
|
||||
# Make an average close price of all the pairs that was involved.
|
||||
# this could be useful to gauge the overall market trend
|
||||
|
||||
# FIX: since the dataframes are of unequal length,
|
||||
# andor has different dates, we need to merge them
|
||||
# But we dont have the date information in the
|
||||
# backtesting results, this is needed to match the dates
|
||||
# For now, assume the dataframes are aligned.
|
||||
max_x = 0
|
||||
for pair, pair_data in dataframes.items():
|
||||
n = len(pair_data['close'])
|
||||
max_x = max(max_x, n)
|
||||
# if max_x != n:
|
||||
# raise Exception('Please rerun script. Input data has different lengths %s'
|
||||
# %('Different pair length: %s <=> %s' %(max_x, n)))
|
||||
print('max_x: %s' %(max_x))
|
||||
|
||||
# We are essentially saying:
|
||||
# array <- sum dataframes[*]['close'] / num_items dataframes
|
||||
# FIX: there should be some onliner numpy/panda for this
|
||||
@ -131,8 +117,9 @@ def plot_profit(args) -> None:
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||
fig.suptitle('total profit')
|
||||
ax1.plot(avgclose, label='avgclose')
|
||||
ax2.plot(pg, label='profit')
|
||||
|
||||
ax1.plot(dates, avgclose, label='avgclose')
|
||||
ax2.plot(dates, pg, label='profit')
|
||||
ax1.legend(loc='upper left')
|
||||
ax2.legend(loc='upper left')
|
||||
|
||||
@ -142,15 +129,15 @@ def plot_profit(args) -> None:
|
||||
# In third graph, we plot each profit separately
|
||||
for pair in pairs:
|
||||
pg = make_profit_array(data, max_x, pair)
|
||||
ax3.plot(pg, label=pair)
|
||||
ax3.plot(dates, pg, label=pair)
|
||||
ax3.legend(loc='upper left')
|
||||
# black background to easier see multiple colors
|
||||
ax3.set_facecolor('black')
|
||||
xfmt = mdates.DateFormatter('%d-%m-%y %H:%M') # Dont let matplotlib autoformat date
|
||||
ax3.xaxis.set_major_formatter(xfmt)
|
||||
|
||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||
# all but bottom plot.
|
||||
fig.subplots_adjust(hspace=0)
|
||||
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
||||
fig.autofmt_xdate() # Rotate the dates
|
||||
plt.show()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user