Use dates on plot profit/dataframe
* plot_dataframe also support --timerange * Both default to tkinter as matplotlib plotting backend
This commit is contained in:
parent
f40d9dbb05
commit
6171be4f46
@ -17,6 +17,19 @@ python script/plot_dataframe.py -p BTC_ETH,BTC_LTC
|
|||||||
The -p pair argument, can be used to specify what
|
The -p pair argument, can be used to specify what
|
||||||
pair you would like to plot.
|
pair you would like to plot.
|
||||||
|
|
||||||
|
**Advanced use**
|
||||||
|
|
||||||
|
To plot the current live price use the --live flag:
|
||||||
|
```
|
||||||
|
python scripts/plot_dataframe.py -p BTC_ETH --live
|
||||||
|
```
|
||||||
|
|
||||||
|
To plot a timerange (to zoom in):
|
||||||
|
```
|
||||||
|
python scripts/plot_dataframe.py -p BTC_ETH --timerange=100-200
|
||||||
|
```
|
||||||
|
Timerange doesn't work with live data.
|
||||||
|
|
||||||
|
|
||||||
## Plot profit
|
## Plot profit
|
||||||
|
|
||||||
@ -46,3 +59,11 @@ Example
|
|||||||
```
|
```
|
||||||
python python scripts/plot_profit.py --datadir ../freqtrade/freqtrade/tests/testdata-20171221/ -p BTC_LTC
|
python python scripts/plot_profit.py --datadir ../freqtrade/freqtrade/tests/testdata-20171221/ -p BTC_LTC
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**When it goes wrong**
|
||||||
|
|
||||||
|
*** Linux: Can't display**
|
||||||
|
|
||||||
|
If you are inside an python environment, you might want to set the
|
||||||
|
DISPLAY variable as so:
|
||||||
|
$ DISPLAY=:0 python scripts/plot_dataframe.py
|
||||||
|
@ -5,8 +5,10 @@ import logging
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
|
from datetime import datetime
|
||||||
from typing import Any, Callable, Dict, List
|
from typing import Any, Callable, Dict, List
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
from jsonschema import Draft4Validator, validate
|
from jsonschema import Draft4Validator, validate
|
||||||
from jsonschema.exceptions import ValidationError, best_match
|
from jsonschema.exceptions import ValidationError, best_match
|
||||||
from wrapt import synchronized
|
from wrapt import synchronized
|
||||||
@ -16,11 +18,6 @@ from freqtrade import __version__
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def file_dump_json(filename, data):
|
|
||||||
with open(filename, 'w') as fp:
|
|
||||||
json.dump(data, fp)
|
|
||||||
|
|
||||||
|
|
||||||
class State(enum.Enum):
|
class State(enum.Enum):
|
||||||
RUNNING = 0
|
RUNNING = 0
|
||||||
STOPPED = 1
|
STOPPED = 1
|
||||||
@ -30,6 +27,44 @@ class State(enum.Enum):
|
|||||||
_STATE = State.STOPPED
|
_STATE = State.STOPPED
|
||||||
|
|
||||||
|
|
||||||
|
############################################
|
||||||
|
# Used by scripts #
|
||||||
|
# Matplotlib doesn't support ::datetime64, #
|
||||||
|
# so we need to convert it into ::datetime #
|
||||||
|
############################################
|
||||||
|
|
||||||
|
def datesarray_to_datetimearray(dates):
|
||||||
|
"""
|
||||||
|
Convert an pandas-array of timestamps into
|
||||||
|
An numpy-array of datetimes
|
||||||
|
:return: numpy-array of datetime
|
||||||
|
"""
|
||||||
|
times = []
|
||||||
|
dates = dates.astype(datetime)
|
||||||
|
for i in range(0, dates.size):
|
||||||
|
date = dates[i].to_pydatetime()
|
||||||
|
times.append(date)
|
||||||
|
return np.array(times)
|
||||||
|
|
||||||
|
|
||||||
|
def common_datearray(dfs):
|
||||||
|
alldates = {}
|
||||||
|
for pair, pair_data in dfs.items():
|
||||||
|
dates = datesarray_to_datetimearray(pair_data['date'])
|
||||||
|
for date in dates:
|
||||||
|
alldates[date] = 1
|
||||||
|
lst = []
|
||||||
|
for date, _ in alldates.items():
|
||||||
|
lst.append(date)
|
||||||
|
arr = np.array(lst)
|
||||||
|
return np.sort(arr, axis=0)
|
||||||
|
|
||||||
|
|
||||||
|
def file_dump_json(filename, data):
|
||||||
|
with open(filename, 'w') as fp:
|
||||||
|
json.dump(data, fp)
|
||||||
|
|
||||||
|
|
||||||
@synchronized
|
@synchronized
|
||||||
def update_state(state: State) -> None:
|
def update_state(state: State) -> None:
|
||||||
"""
|
"""
|
||||||
@ -155,6 +190,15 @@ def parse_args(args: List[str], description: str):
|
|||||||
return parser.parse_args(args)
|
return parser.parse_args(args)
|
||||||
|
|
||||||
|
|
||||||
|
def scripts_options(parser: argparse.ArgumentParser) -> None:
|
||||||
|
parser.add_argument(
|
||||||
|
'-p', '--pair',
|
||||||
|
help='Show profits for only this pairs. Pairs are comma-separated.',
|
||||||
|
dest='pair',
|
||||||
|
default=None
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def backtesting_options(parser: argparse.ArgumentParser) -> None:
|
def backtesting_options(parser: argparse.ArgumentParser) -> None:
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'-l', '--live',
|
'-l', '--live',
|
||||||
|
@ -1,23 +1,23 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
|
import logging
|
||||||
import argparse
|
import argparse
|
||||||
import matplotlib # Install PYQT5 manually if you want to test this helper function
|
import matplotlib
|
||||||
matplotlib.use("Qt5Agg")
|
import matplotlib.dates as mdates
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from freqtrade import exchange, analyze
|
from freqtrade import exchange, analyze
|
||||||
from freqtrade.misc import common_args_parser
|
import freqtrade.misc as misc
|
||||||
|
import freqtrade.optimize as optimize
|
||||||
|
import freqtrade.analyze as analyze
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def plot_parse_args(args ):
|
def plot_parse_args(args):
|
||||||
parser = common_args_parser(description='Graph utility')
|
parser = misc.common_args_parser('Graph dataframe')
|
||||||
parser.add_argument(
|
misc.backtesting_options(parser)
|
||||||
'-p', '--pair',
|
misc.scripts_options(parser)
|
||||||
help = 'What currency pair',
|
|
||||||
dest = 'pair',
|
|
||||||
default = 'BTC_ETH',
|
|
||||||
type = str,
|
|
||||||
)
|
|
||||||
return parser.parse_args(args)
|
return parser.parse_args(args)
|
||||||
|
|
||||||
|
|
||||||
@ -28,11 +28,25 @@ def plot_analyzed_dataframe(args):
|
|||||||
:return: None
|
:return: None
|
||||||
"""
|
"""
|
||||||
pair = args.pair
|
pair = args.pair
|
||||||
|
pairs = [pair]
|
||||||
|
timerange = misc.parse_timerange(args.timerange)
|
||||||
|
|
||||||
# Init Bittrex to use public API
|
tickers = {}
|
||||||
|
if args.live:
|
||||||
|
logger.info('Downloading pair.')
|
||||||
exchange._API = exchange.Bittrex({'key': '', 'secret': ''})
|
exchange._API = exchange.Bittrex({'key': '', 'secret': ''})
|
||||||
ticker = exchange.get_ticker_history(pair)
|
tickers[pair] = exchange.get_ticker_history(pair, args.ticker_interval)
|
||||||
dataframe = analyze.analyze_ticker(ticker)
|
else:
|
||||||
|
tickers = optimize.load_data(args.datadir, pairs=pairs,
|
||||||
|
ticker_interval=args.ticker_interval,
|
||||||
|
refresh_pairs=False,
|
||||||
|
timerange=timerange)
|
||||||
|
dataframes = optimize.tickerdata_to_dataframe(tickers)
|
||||||
|
dataframe = dataframes[pair]
|
||||||
|
dataframe = analyze.populate_buy_trend(dataframe)
|
||||||
|
dataframe = analyze.populate_sell_trend(dataframe)
|
||||||
|
|
||||||
|
dates = misc.datesarray_to_datetimearray(dataframe['date'])
|
||||||
|
|
||||||
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
||||||
dataframe.loc[dataframe['sell'] == 1, 'sell_price'] = dataframe['close']
|
dataframe.loc[dataframe['sell'] == 1, 'sell_price'] = dataframe['close']
|
||||||
@ -40,27 +54,30 @@ def plot_analyzed_dataframe(args):
|
|||||||
# Two subplots sharing x axis
|
# Two subplots sharing x axis
|
||||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||||
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
||||||
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
ax1.plot(dates, dataframe['close'], label='close')
|
||||||
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
# ax1.plot(dates, dataframe['sell'], 'ro', label='sell')
|
||||||
ax1.plot(dataframe.index.values, dataframe['sma'], '--', label='SMA')
|
ax1.plot(dates, dataframe['sma'], '--', label='SMA')
|
||||||
ax1.plot(dataframe.index.values, dataframe['tema'], ':', label='TEMA')
|
ax1.plot(dates, dataframe['tema'], ':', label='TEMA')
|
||||||
ax1.plot(dataframe.index.values, dataframe['blower'], '-.', label='BB low')
|
ax1.plot(dates, dataframe['blower'], '-.', label='BB low')
|
||||||
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
|
ax1.plot(dates, dataframe['buy_price'], 'bo', label='buy')
|
||||||
ax1.legend()
|
ax1.legend()
|
||||||
|
|
||||||
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
ax2.plot(dates, dataframe['adx'], label='ADX')
|
||||||
ax2.plot(dataframe.index.values, dataframe['mfi'], label='MFI')
|
ax2.plot(dates, dataframe['mfi'], label='MFI')
|
||||||
# ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
# ax2.plot(dates, [25] * len(dataframe.index.values))
|
||||||
ax2.legend()
|
ax2.legend()
|
||||||
|
|
||||||
ax3.plot(dataframe.index.values, dataframe['fastk'], label='k')
|
ax3.plot(dates, dataframe['fastk'], label='k')
|
||||||
ax3.plot(dataframe.index.values, dataframe['fastd'], label='d')
|
ax3.plot(dates, dataframe['fastd'], label='d')
|
||||||
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
|
ax3.plot(dates, [20] * len(dataframe.index.values))
|
||||||
ax3.legend()
|
ax3.legend()
|
||||||
|
xfmt = mdates.DateFormatter('%d-%m-%y %H:%M') # Dont let matplotlib autoformat date
|
||||||
|
ax3.xaxis.set_major_formatter(xfmt)
|
||||||
|
|
||||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||||
# all but bottom plot.
|
# all but bottom plot.
|
||||||
fig.subplots_adjust(hspace=0)
|
fig.subplots_adjust(hspace=0)
|
||||||
|
fig.autofmt_xdate() # Rotate the dates
|
||||||
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
@ -4,24 +4,19 @@ import sys
|
|||||||
import argparse
|
import argparse
|
||||||
import json
|
import json
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.dates as mdates
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import freqtrade.optimize as optimize
|
import freqtrade.optimize as optimize
|
||||||
import freqtrade.misc as misc
|
import freqtrade.misc as misc
|
||||||
import freqtrade.exchange as exchange
|
import freqtrade.exchange as exchange
|
||||||
import freqtrade.analyze as analyze
|
|
||||||
|
|
||||||
|
|
||||||
def plot_parse_args(args ):
|
def plot_parse_args(args):
|
||||||
parser = misc.common_args_parser('Graph utility')
|
parser = misc.common_args_parser('Graph profits')
|
||||||
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
|
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
|
||||||
misc.backtesting_options(parser)
|
misc.backtesting_options(parser)
|
||||||
parser.add_argument(
|
misc.scripts_options(parser)
|
||||||
'-p', '--pair',
|
|
||||||
help = 'Show profits for only this pairs. Pairs are comma-separated.',
|
|
||||||
dest = 'pair',
|
|
||||||
default = None
|
|
||||||
)
|
|
||||||
return parser.parse_args(args)
|
return parser.parse_args(args)
|
||||||
|
|
||||||
|
|
||||||
@ -85,23 +80,14 @@ def plot_profit(args) -> None:
|
|||||||
timerange=timerange)
|
timerange=timerange)
|
||||||
dataframes = optimize.preprocess(tickers)
|
dataframes = optimize.preprocess(tickers)
|
||||||
|
|
||||||
|
# NOTE: the dataframes are of unequal length,
|
||||||
|
# 'dates' is an merged date array of them all.
|
||||||
|
|
||||||
|
dates = misc.common_datearray(dataframes)
|
||||||
|
max_x = dates.size
|
||||||
|
|
||||||
# Make an average close price of all the pairs that was involved.
|
# Make an average close price of all the pairs that was involved.
|
||||||
# this could be useful to gauge the overall market trend
|
# this could be useful to gauge the overall market trend
|
||||||
|
|
||||||
# FIX: since the dataframes are of unequal length,
|
|
||||||
# andor has different dates, we need to merge them
|
|
||||||
# But we dont have the date information in the
|
|
||||||
# backtesting results, this is needed to match the dates
|
|
||||||
# For now, assume the dataframes are aligned.
|
|
||||||
max_x = 0
|
|
||||||
for pair, pair_data in dataframes.items():
|
|
||||||
n = len(pair_data['close'])
|
|
||||||
max_x = max(max_x, n)
|
|
||||||
# if max_x != n:
|
|
||||||
# raise Exception('Please rerun script. Input data has different lengths %s'
|
|
||||||
# %('Different pair length: %s <=> %s' %(max_x, n)))
|
|
||||||
print('max_x: %s' %(max_x))
|
|
||||||
|
|
||||||
# We are essentially saying:
|
# We are essentially saying:
|
||||||
# array <- sum dataframes[*]['close'] / num_items dataframes
|
# array <- sum dataframes[*]['close'] / num_items dataframes
|
||||||
# FIX: there should be some onliner numpy/panda for this
|
# FIX: there should be some onliner numpy/panda for this
|
||||||
@ -131,8 +117,9 @@ def plot_profit(args) -> None:
|
|||||||
|
|
||||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||||
fig.suptitle('total profit')
|
fig.suptitle('total profit')
|
||||||
ax1.plot(avgclose, label='avgclose')
|
|
||||||
ax2.plot(pg, label='profit')
|
ax1.plot(dates, avgclose, label='avgclose')
|
||||||
|
ax2.plot(dates, pg, label='profit')
|
||||||
ax1.legend(loc='upper left')
|
ax1.legend(loc='upper left')
|
||||||
ax2.legend(loc='upper left')
|
ax2.legend(loc='upper left')
|
||||||
|
|
||||||
@ -142,15 +129,15 @@ def plot_profit(args) -> None:
|
|||||||
# In third graph, we plot each profit separately
|
# In third graph, we plot each profit separately
|
||||||
for pair in pairs:
|
for pair in pairs:
|
||||||
pg = make_profit_array(data, max_x, pair)
|
pg = make_profit_array(data, max_x, pair)
|
||||||
ax3.plot(pg, label=pair)
|
ax3.plot(dates, pg, label=pair)
|
||||||
ax3.legend(loc='upper left')
|
ax3.legend(loc='upper left')
|
||||||
# black background to easier see multiple colors
|
# black background to easier see multiple colors
|
||||||
ax3.set_facecolor('black')
|
ax3.set_facecolor('black')
|
||||||
|
xfmt = mdates.DateFormatter('%d-%m-%y %H:%M') # Dont let matplotlib autoformat date
|
||||||
|
ax3.xaxis.set_major_formatter(xfmt)
|
||||||
|
|
||||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
|
||||||
# all but bottom plot.
|
|
||||||
fig.subplots_adjust(hspace=0)
|
fig.subplots_adjust(hspace=0)
|
||||||
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
fig.autofmt_xdate() # Rotate the dates
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user