diff --git a/user_data/strategies/1. defaultBB +6609%.py b/user_data/strategies/1. defaultBB +6609%.py new file mode 100644 index 000000000..474776834 --- /dev/null +++ b/user_data/strategies/1. defaultBB +6609%.py @@ -0,0 +1,346 @@ +# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement + +# --- Do not remove these libs --- +import numpy as np # noqa +import pandas as pd # noqa +from pandas import DataFrame + +from freqtrade.strategy.interface import IStrategy + +# -------------------------------- +# Add your lib to import here +import talib.abstract as ta +import freqtrade.vendor.qtpylib.indicators as qtpylib + + +class defaultB(IStrategy): + """ + This is a strategy template to get you started. + More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md + + You can: + :return: a Dataframe with all mandatory indicators for the strategies + - Rename the class name (Do not forget to update class_name) + - Add any methods you want to build your strategy + - Add any lib you need to build your strategy + + You must keep: + - the lib in the section "Do not remove these libs" + - the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend, + populate_sell_trend, hyperopt_space, buy_strategy_generator + """ + # Strategy interface version - allow new iterations of the strategy interface. + # Check the documentation or the Sample strategy to get the latest version. + INTERFACE_VERSION = 2 + + # Minimal ROI designed for the strategy. + # This attribute will be overridden if the config file contains "minimal_roi". + minimal_roi = { + "4320": 0.0018, + #"300": 0.01, + #"60": 0.04, # 0.01 + #"30": 0.06, # 0.02 + "0": 0.30 # 0.04 + } + + # Optimal stoploss designed for the strategy. + # This attribute will be overridden if the config file contains "stoploss". + stoploss = -0.0521 # -0.05 + + # Trailing stoploss + trailing_stop = True + trailing_only_offset_is_reached = True + + # trailing_stop_positive = 0.005 + trailing_stop_positive = 0.0005 + trailing_stop_positive_offset = 0.034 + + # Optimal timeframe for the strategy. + timeframe = '30m' + + # Run "populate_indicators()" only for new candle. + process_only_new_candles = False + + # These values canconfig222 be overridden in the "ask_strategy" section in the config. + use_sell_signal = False + sell_profit_only = True + ignore_roi_if_buy_signal = True + + # Number of candles the strategy requires before producing valid signals + startup_candle_count: int = 200 + + # Optional order type mapping. + order_types = { + 'buy': 'limit', + 'sell': 'limit', + 'stoploss': 'market', + 'stoploss_on_exchange': False + } + + # Optional order time in force. + order_time_in_force = { + 'buy': 'gtc', + 'sell': 'gtc' + } + + plot_config = { + # Main plot indicators (Moving averages, ...) + 'main_plot': { + 'tema': {}, + 'sar': {'color': 'white'}, + }, + 'subplots': { + # Subplots - each dict defines one additional plot + "MACD": { + 'macd': {'color': 'blue'}, + 'macdsignal': {'color': 'orange'}, + }, + "RSI": { + 'rsi': {'color': 'red'}, + } + } + } + def informative_pairs(self): + """ + Define additional, informative pair/interval combinations to be cached from the exchange. + These pair/interval combinations are non-tradeable, unless they are part + of the whitelist as well. + For more information, please consult the documentation + :return: List of tuples in the format (pair, interval) + Sample: return [("ETH/USDT", "5m"), + ("BTC/USDT", "15m"), + ] + """ + return [] + + def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: + """ + Adds several different TA indicators to the given DataFrame + + Performance Note: For the best performance be frugal on the number of indicators + you are using. Let uncomment only the indicator you are using in your strategies + or your hyperopt configuration, otherwise you will waste your memory and CPU usage. + :param dataframe: Dataframe with data from the exchange + :param metadata: Additional information, like the currently traded pair + :return: a Dataframe with all mandatory indicators for the strategies + """ + + # Momentum Indicators + # ------------------------------------ + + # ADX + dataframe['adx'] = ta.ADX(dataframe) + dataframe['adx50'] = ta.ADX(dataframe, timeperiod=50) + + + # # Commodity Channel Index: values [Oversold:-100, Overbought:100] + dataframe['cci'] = ta.CCI(dataframe) + dataframe['cmo'] = ta.CMO(dataframe) + + # RSI + dataframe['rsi'] = ta.RSI(dataframe) + dataframe['rsi25'] = ta.RSI(dataframe, timeperiod=25) + dataframe['rsi50'] = ta.RSI(dataframe, timeperiod=50) + dataframe['rsi100'] = ta.RSI(dataframe, timeperiod=100) + dataframe['rsi200'] = ta.RSI(dataframe, timeperiod=200) + dataframe['rsi400'] = ta.RSI(dataframe, timeperiod=400) + dataframe['rsi1000'] = ta.RSI(dataframe, timeperiod=1000) + + + # Stochastic Fast + stoch_fast = ta.STOCHF(dataframe) + dataframe['fastd'] = stoch_fast['fastd'] + dataframe['fastk'] = stoch_fast['fastk'] + + + # MACD + macd = ta.MACD(dataframe) + dataframe['macd'] = macd['macd'] + dataframe['macdsignal'] = macd['macdsignal'] + dataframe['macdhist'] = macd['macdhist'] + + # MFI + dataframe['mfi'] = ta.MFI(dataframe) + dataframe['mfi20'] = ta.MFI(dataframe, timeperiod=20) + dataframe['mfi50'] = ta.MFI(dataframe, timeperiod=50) + dataframe['mfi100'] = ta.MFI(dataframe, timeperiod=100) + dataframe['mfi200'] = ta.MFI(dataframe, timeperiod=200) + dataframe['mfi400'] = ta.MFI(dataframe, timeperiod=400) + dataframe['mfi1000'] = ta.MFI(dataframe, timeperiod=1000) + + # # ROC + dataframe['roc'] = ta.ROC(dataframe) + + # Overlap Studies + # ------------------------------------ + + # Bollinger Bands + bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) + dataframe['bb_lowerband'] = bollinger['lower'] + dataframe['bb_middleband'] = bollinger['mid'] + dataframe['bb_upperband'] = bollinger['upper'] + dataframe["bb_percent"] = ( + (dataframe["close"] - dataframe["bb_lowerband"]) / + (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) + ) + dataframe["bb_width"] = ( + (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"] + ) + + # # EMA - Exponential Moving Average + # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) + # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) + dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) + dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21) + dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) + dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) + dataframe['ema200'] = ta.EMA(dataframe, timeperiod=100) + dataframe['ema400'] = ta.EMA(dataframe, timeperiod=100) + + + # Parabolic SAR + dataframe['sar'] = ta.SAR(dataframe) + + # TEMA - Triple Exponential Moving Average + dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9) + dataframe['tema3'] = ta.TEMA(dataframe, timeperiod=3) + dataframe['tema5'] = ta.TEMA(dataframe, timeperiod=5) + dataframe['tema14'] = ta.TEMA(dataframe, timeperiod=14) + dataframe['tema21'] = ta.TEMA(dataframe, timeperiod=21) + dataframe['tema50'] = ta.TEMA(dataframe, timeperiod=50) + + # Cycle Indicator + # ------------------------------------ + # Hilbert Transform Indicator - SineWave + hilbert = ta.HT_SINE(dataframe) + dataframe['htsine'] = hilbert['sine'] + dataframe['htleadsine'] = hilbert['leadsine'] + + # # Chart type + # # ------------------------------------ + # helps with pattern recognition + dataframe['average'] = (dataframe['close'] + dataframe['open'] + dataframe['high'] + dataframe['low']) / 4 + dataframe['sma_slow'] = ta.SMA(dataframe, timeperiod=200, price='close') + dataframe['sma_medium'] = ta.SMA(dataframe, timeperiod=100, price='close') + dataframe['sma_fast'] = ta.SMA(dataframe, timeperiod=50, price='close') + + # Retrieve best bid and best ask from the orderbook + # ------------------------------------ + """ + # first check if dataprovider is available + if self.dp: + if self.dp.runmode in ('live', 'dry_run'): + ob = self.dp.orderbook(metadata['pair'], 1) + dataframe['best_bid'] = ob['bids'][0][0] + dataframe['best_ask'] = ob['asks'][0][0] + """ + + return dataframe + + def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: + """ + Based on TA indicators, populates the buy signal for the given dataframe + :param dataframe: DataFrame populated with indicators + :param metadata: Additional information, like the currently traded pair + :return: DataFrame with buy column + """ + dataframe.loc[ # Breakout: TEMA crosses over longer TEMA + ( + (qtpylib.crossed_above(dataframe['tema5'], dataframe['tema14'])) & + (dataframe['adx'] > 25) + ), + 'buy'] = 1 + dataframe.loc[ # Breakout: RSI plus momentum + ( + (qtpylib.crossed_above(dataframe['rsi'], 60)) & + (dataframe['adx'] > 30) + ), + 'buy'] = 1 + dataframe.loc[ # Breakout: crossing middle of Bollinger Bands + ( + (qtpylib.crossed_above(dataframe['close'], dataframe['bb_middleband'])) & + (dataframe['adx'] > 30) & + (dataframe['adx'] > dataframe['adx'].shift(1)) & + (dataframe['adx'].shift(1) > dataframe['adx'].shift(2)) & + (dataframe['adx'].shift(2) > dataframe['adx'].shift(3)) & + (dataframe['close'] > dataframe['ema21']) & + (dataframe['close'] > dataframe['ema50']) & + (dataframe['roc'] > 0) & + (dataframe['ema50'] > 0) & + (dataframe['ema21'] > dataframe['ema50']) + ), + 'buy'] = 1 + dataframe.loc[ # Breakout: Increasing momentum and positive price action + ( + (qtpylib.crossed_above(dataframe['adx'], 25)) & + (dataframe['ema21'] > dataframe['ema50']) + ), + 'buy'] = 1 + dataframe.loc[ # BTFD: CCI bounce + # Doesn't like BTC Dominance tracking sideways + # Enable by uncommenting the indicators + ( + #(qtpylib.crossed_above(dataframe['cci'], -100)) + ), + 'buy'] = 1 + dataframe.loc[ # BTFD: Price Crosses into the Bollinger Bands from below + # Doesn't like BTC Dominance tracking sideways + # Enable by uncommenting the indicators + ( + #(qtpylib.crossed_above(dataframe['close'], dataframe['bb_lowerband'])) + ), + 'buy'] = 1 + dataframe.loc[ # BTFD: V-shaped bottom. + # Doesn't like BTC Dominance tracking sideways + # Enable by uncommenting the indicators + ( + #(dataframe['average'].shift(5) > dataframe['average'].shift(4)) & + #(dataframe['average'].shift(4) > dataframe['average'].shift(3)) & + #(dataframe['average'].shift(3) > dataframe['average'].shift(2)) & + #(dataframe['average'].shift(2) > dataframe['average'].shift(1)) & + #(dataframe['average'].shift(1) < dataframe['average'].shift(0)) & + #(dataframe['low'].shift(1) < dataframe['bb_middleband']) & + #(dataframe['cci'].shift(1) < -100) + ), + 'buy'] = 1 + return dataframe + + def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: + """ + Based on TA indicators, populates the sell signal for the given dataframe + :param dataframe: DataFrame populated with indicators + :param metadata: Additional information, like the currently traded pair + :return: DataFrame with buy column + """ + dataframe.loc[ + ( + (qtpylib.crossed_above(dataframe['mfi'], 95)) # Signal: RSI crosses above 70 + ), + 'sell'] = 1 + dataframe.loc[ + ( + (dataframe['mfi'] > 90) & # Signal: RSI crosses above 70 + (dataframe['tema'] < dataframe['tema'].shift(3)) & # Guard: negative trend + (dataframe['volume'] > 0) # Make sure Volume is not 0 + ), + 'sell'] = 1 + dataframe.loc[ + ( + (qtpylib.crossed_above(dataframe['close'], dataframe['bb_upperband'])) & + (dataframe['mfi'] > 60) # High MFI + ), + 'sell'] = 1 + dataframe.loc[ + ( + (qtpylib.crossed_below(dataframe['adx'], 28)) & + (dataframe['rsi'] > 60) # High RSI + ), + 'sell'] = 1 + dataframe.loc[ + ( + (qtpylib.crossed_below(dataframe['adx'], 28)) & + (dataframe['mfi'] > 60) # High MFI + ), + 'sell'] = 1 + return dataframe +