improve hyperopt docs

This commit is contained in:
Matthias 2019-01-06 14:47:53 +01:00
parent dd2af86a41
commit 5dd1f9b38a

View File

@ -16,6 +16,22 @@ an example hyperopt file located into [user_data/hyperopts/](https://github.com/
Configuring hyperopt is similar to writing your own strategy, and many tasks will be similar and a lot of code can be copied across from the strategy.
### Checklist on all tasks / possibilities in hyperopt
Depending on the space you want to optimize, only some of the below are required.
* fill `populate_indicators` - probably a copy from your strategy
* fill `buy_strategy_generator` - for buy signal optimization
* fill `indicator_space` - for buy signal optimzation
* fill `sell_strategy_generator` - for sell signal optimization
* fill `sell_indicator_space` - for sell signal optimzation
* fill `roi_space` - for ROI optimization
* fill `generate_roi_table` - for ROI optimization (if you need more than 3 entries)
* fill `stoploss_space` - stoploss optimization
* Optional but reccomended
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
### 1. Install a Custom Hyperopt File
Put your hyperopt file into the folder`user_data/hyperopts`.
@ -49,11 +65,11 @@ If you have updated the buy strategy, ie. changed the contents of
Similar to the buy-signal above, sell-signals can also be optimized.
Place the corresponding settings into the following methods
- Inside `sell_indicator_space()` - the parameters hyperopt shall be optimizing.
- Inside `populate_sell_trend()` - applying the parameters.
* Inside `sell_indicator_space()` - the parameters hyperopt shall be optimizing.
* Inside `populate_sell_trend()` - applying the parameters.
The configuration and rules are the same than for buy signals.
To avoid naming collisions in the search-space, please prefix all sell-spaces with sell-.
To avoid naming collisions in the search-space, please prefix all sell-spaces with `sell-`.
## Solving a Mystery
@ -65,7 +81,7 @@ mystery.
We will start by defining a search space:
```
```python
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
@ -88,7 +104,7 @@ one we call `trigger` and use it to decide which buy trigger we want to use.
So let's write the buy strategy using these values:
```
``` python
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
@ -136,7 +152,7 @@ Because hyperopt tries a lot of combinations to find the best parameters it will
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
```bash
python3 ./freqtrade/main.py --hyperopt <hyperoptname> -c config.json hyperopt -e 5000
python3 ./freqtrade/main.py --hyperopt <hyperoptname> -c config.json hyperopt -e 5000 --spaces all
```
Use `<hyperoptname>` as the name of the custom hyperopt used.
@ -144,6 +160,11 @@ Use `<hyperoptname>` as the name of the custom hyperopt used.
The `-e` flag will set how many evaluations hyperopt will do. We recommend
running at least several thousand evaluations.
The `--spaces all` flag determines that all possible parameters should be optimized. Possibilities are listed below.
!!! Warning
When switching parameters or changing configuration options, the file `user_data/hyperopt_results.pickle` should be removed. It's used to be able to continue interrupted calculations, but does not detect changes to settings or the hyperopt file.
### Execute Hyperopt with Different Ticker-Data Source
If you would like to hyperopt parameters using an alternate ticker data that
@ -186,7 +207,11 @@ Given the following result from hyperopt:
Best result:
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
with values:
{'adx-value': 44, 'rsi-value': 29, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'bb_lower'}
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': False,
'rsi-enabled': True,
'trigger': 'bb_lower'}
```
You should understand this result like:
@ -226,9 +251,24 @@ If you are optimizing ROI, you're result will look as follows and include a ROI
Best result:
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
with values:
{'adx-value': 44, 'rsi-value': 29, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'bb_lower', 'roi_t1': 40, 'roi_t2': 57, 'roi_t3': 21, 'roi_p1': 0.03634636907306948, 'roi_p2': 0.055237357937802885, 'roi_p3': 0.015163796015548354, 'stoploss': -0.37996664668703606}
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': false,
'rsi-enabled': True,
'trigger': 'bb_lower',
'roi_t1': 40,
'roi_t2': 57,
'roi_t3': 21,
'roi_p1': 0.03634636907306948,
'roi_p2': 0.055237357937802885,
'roi_p3': 0.015163796015548354,
'stoploss': -0.37996664668703606
}
ROI table:
{0: 0.10674752302642071, 21: 0.09158372701087236, 78: 0.03634636907306948, 118: 0}
{ 0: 0.10674752302642071,
21: 0.09158372701087236,
78: 0.03634636907306948,
118: 0}
```
This would translate to the following ROI table: