commit
5c8544a425
@ -53,6 +53,21 @@
|
||||
"sell_profit_only": false,
|
||||
"ignore_roi_if_buy_signal": false
|
||||
},
|
||||
"edge": {
|
||||
"enabled": false,
|
||||
"process_throttle_secs": 3600,
|
||||
"calculate_since_number_of_days": 7,
|
||||
"total_capital_in_stake_currency": 0.5,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"minimum_winrate": 0.60,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 10,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": false
|
||||
},
|
||||
"telegram": {
|
||||
"enabled": true,
|
||||
"token": "your_telegram_token",
|
||||
|
@ -59,6 +59,20 @@
|
||||
],
|
||||
"outdated_offset": 5
|
||||
},
|
||||
"edge": {
|
||||
"enabled": false,
|
||||
"process_throttle_secs": 3600,
|
||||
"calculate_since_number_of_days": 2,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"minimum_winrate": 0.60,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 10,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": false
|
||||
},
|
||||
"experimental": {
|
||||
"use_sell_signal": false,
|
||||
"sell_profit_only": false,
|
||||
|
@ -47,6 +47,7 @@ The table below will list all configuration parameters.
|
||||
| `exchange.ccxt_rate_limit` | True | No | DEPRECATED!! Have CCXT handle Exchange rate limits. Depending on the exchange, having this to false can lead to temporary bans from the exchange.
|
||||
| `exchange.ccxt_config` | None | No | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
|
||||
| `exchange.ccxt_async_config` | None | No | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
|
||||
| `edge` | false | No | Please refer to [edge configuration document](edge.md) for detailed explanation.
|
||||
| `experimental.use_sell_signal` | false | No | Use your sell strategy in addition of the `minimal_roi`.
|
||||
| `experimental.sell_profit_only` | false | No | waits until you have made a positive profit before taking a sell decision.
|
||||
| `experimental.ignore_roi_if_buy_signal` | false | No | Does not sell if the buy-signal is still active. Takes preference over `minimal_roi` and `use_sell_signal`
|
||||
|
151
docs/edge.md
Normal file
151
docs/edge.md
Normal file
@ -0,0 +1,151 @@
|
||||
# Edge positioning
|
||||
|
||||
This page explains how to use Edge Positioning module in your bot in order to enter into a trade only if the trade has a reasonable win rate and risk reward ratio, and consequently adjust your position size and stoploss.
|
||||
|
||||
**NOTICE:** Edge positioning is not compatible with dynamic whitelist. it overrides dynamic whitelist.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Introduction](#introduction)
|
||||
- [How does it work?](#how-does-it-work?)
|
||||
- [Configurations](#configurations)
|
||||
|
||||
## Introduction
|
||||
Trading is all about probability. No one can claim that he has a strategy working all the time. You have to assume that sometimes you lose.<br/><br/>
|
||||
But it doesn't mean there is no rule, it only means rules should work "most of the time". Let's play a game: we toss a coin, heads: I give you 10$, tails: You give me 10$. Is it an interesting game ? no, it is quite boring, isn't it?<br/><br/>
|
||||
But let's say the probability that we have heads is 80%, and the probability that we have tails is 20%. Now it is becoming interesting ...
|
||||
That means 10$ x 80% versus 10$ x 20%. 8$ versus 2$. That means over time you will win 8$ risking only 2$ on each toss of coin.<br/><br/>
|
||||
Let's complicate it more: you win 80% of the time but only 2$, I win 20% of the time but 8$. The calculation is: 80% * 2$ versus 20% * 8$. It is becoming boring again because overtime you win $1.6$ (80% x 2$) and me $1.6 (20% * 8$) too.<br/><br/>
|
||||
The question is: How do you calculate that? how do you know if you wanna play?
|
||||
The answer comes to two factors:
|
||||
- Win Rate
|
||||
- Risk Reward Ratio
|
||||
|
||||
|
||||
### Win Rate
|
||||
Means over X trades what is the percentage of winning trades to total number of trades (note that we don't consider how much you gained but only If you won or not).
|
||||
|
||||
|
||||
`W = (Number of winning trades) / (Number of losing trades)`
|
||||
|
||||
### Risk Reward Ratio
|
||||
Risk Reward Ratio is a formula used to measure the expected gains of a given investment against the risk of loss. It is basically what you potentially win divided by what you potentially lose:
|
||||
|
||||
`R = Profit / Loss`
|
||||
|
||||
Over time, on many trades, you can calculate your risk reward by dividing your average profit on winning trades by your average loss on losing trades:
|
||||
|
||||
`Average profit = (Sum of profits) / (Number of winning trades)`
|
||||
|
||||
`Average loss = (Sum of losses) / (Number of losing trades)`
|
||||
|
||||
`R = (Average profit) / (Average loss)`
|
||||
|
||||
### Expectancy
|
||||
|
||||
At this point we can combine W and R to create an expectancy ratio. This is a simple process of multiplying the risk reward ratio by the percentage of winning trades, and subtracting the percentage of losing trades, which is calculated as follows:
|
||||
|
||||
Expectancy Ratio = (Risk Reward Ratio x Win Rate) – Loss Rate
|
||||
|
||||
So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
|
||||
|
||||
`Expectancy = (5 * 0.28) - 0.72 = 0.68`
|
||||
|
||||
Superficially, this means that on average you expect this strategy’s trades to return .68 times the size of your losers. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
|
||||
|
||||
It is important to remember that any system with an expectancy greater than 0 is profitable using past data. The key is finding one that will be profitable in the future.
|
||||
|
||||
You can also use this number to evaluate the effectiveness of modifications to this system.
|
||||
|
||||
**NOTICE:** It's important to keep in mind that Edge is testing your expectancy using historical data , there's no guarantee that you will have a similar edge in the future. It's still vital to do this testing in order to build confidence in your methodology, but be wary of "curve-fitting" your approach to the historical data as things are unlikely to play out the exact same way for future trades.
|
||||
|
||||
## How does it work?
|
||||
If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over X trades for each stoploss. Here is an example:
|
||||
|
||||
| Pair | Stoploss | Win Rate | Risk Reward Ratio | Expectancy |
|
||||
|----------|:-------------:|-------------:|------------------:|-----------:|
|
||||
| XZC/ETH | -0.03 | 0.52 |1.359670 | 0.228 |
|
||||
| XZC/ETH | -0.01 | 0.50 |1.176384 | 0.088 |
|
||||
| XZC/ETH | -0.02 | 0.51 |1.115941 | 0.079 |
|
||||
|
||||
The goal here is to find the best stoploss for the strategy in order to have the maximum expectancy. In the above example stoploss at 3% leads to the maximum expectancy according to historical data.
|
||||
|
||||
Edge then forces stoploss to your strategy dynamically.
|
||||
|
||||
### Position size
|
||||
Edge dictates the stake amount for each trade to the bot according to the following factors:
|
||||
|
||||
- Allowed capital at risk
|
||||
- Stoploss
|
||||
|
||||
Allowed capital at risk is calculated as follows:
|
||||
|
||||
**allowed capital at risk** = **total capital** X **allowed risk per trade**
|
||||
|
||||
**total capital** is your stake amount.
|
||||
|
||||
**Stoploss** is calculated as described above against historical data.
|
||||
|
||||
Your position size then will be:
|
||||
|
||||
**position size** = **allowed capital at risk** / **stoploss**
|
||||
|
||||
Example:
|
||||
Let's say your stake amount is 3 ETH, you would allow 1% of risk for each trade. thus your allowed capital at risk would be **3 x 0.01 = 0.03 ETH**. Let's assume Edge has calculated that for **XLM/ETH** market your stoploss should be at 2%. So your position size will be **0.03 / 0.02= 1.5ETH**.<br/>
|
||||
|
||||
## Configurations
|
||||
Edge has following configurations:
|
||||
|
||||
#### enabled
|
||||
If true, then Edge will run periodically<br/>
|
||||
(default to false)
|
||||
|
||||
#### process_throttle_secs
|
||||
How often should Edge run in seconds? <br/>
|
||||
(default to 3600 so one hour)
|
||||
|
||||
#### calculate_since_number_of_days
|
||||
Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy
|
||||
Note that it downloads historical data so increasing this number would lead to slowing down the bot<br/>
|
||||
(default to 7)
|
||||
|
||||
#### allowed_risk
|
||||
Percentage of allowed risk per trade<br/>
|
||||
(default to 0.01 [1%])
|
||||
|
||||
#### stoploss_range_min
|
||||
Minimum stoploss <br/>
|
||||
(default to -0.01)
|
||||
|
||||
#### stoploss_range_max
|
||||
Maximum stoploss <br/>
|
||||
(default to -0.10)
|
||||
|
||||
#### stoploss_range_step
|
||||
As an example if this is set to -0.01 then Edge will test the strategy for [-0.01, -0,02, -0,03 ..., -0.09, -0.10] ranges.
|
||||
Note than having a smaller step means having a bigger range which could lead to slow calculation. <br/>
|
||||
if you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10. <br/>
|
||||
(default to -0.01)
|
||||
|
||||
#### minimum_winrate
|
||||
It filters pairs which don't have at least minimum_winrate.
|
||||
This comes handy if you want to be conservative and don't comprise win rate in favor of risk reward ratio.<br/>
|
||||
(default to 0.60)
|
||||
|
||||
#### minimum_expectancy
|
||||
It filters paris which have an expectancy lower than this number .
|
||||
Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return.<br/>
|
||||
(default to 0.20)
|
||||
|
||||
#### min_trade_number
|
||||
When calculating W and R and E (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br/>
|
||||
(default to 10, it is highly recommended not to decrease this number)
|
||||
|
||||
#### max_trade_duration_minute
|
||||
Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br/>
|
||||
**NOTICE:** While configuring this value, you should take into consideration your ticker interval. as an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. default value is set assuming your strategy interval is relatively small (1m or 5m, etc).<br/>
|
||||
(default to 1 day, 1440 = 60 * 24)
|
||||
|
||||
#### remove_pumps
|
||||
Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br/>
|
||||
(default to false)
|
@ -25,6 +25,7 @@ Pull-request. Do not hesitate to reach us on
|
||||
- [Change your strategy](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
|
||||
- [Add more Indicator](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
|
||||
- [Test your strategy with Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
|
||||
- [Edge positioning](https://github.com/mishaker/freqtrade/blob/money_mgt/docs/edge.md)
|
||||
- [Find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
|
||||
- [Control the bot with telegram](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md)
|
||||
- [Receive notifications via webhook](https://github.com/freqtrade/freqtrade/blob/develop/docs/webhook-config.md)
|
||||
|
@ -102,6 +102,7 @@ CONF_SCHEMA = {
|
||||
}
|
||||
},
|
||||
'exchange': {'$ref': '#/definitions/exchange'},
|
||||
'edge': {'$ref': '#/definitions/edge'},
|
||||
'experimental': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
@ -170,6 +171,23 @@ CONF_SCHEMA = {
|
||||
'ccxt_async_config': {'type': 'object'}
|
||||
},
|
||||
'required': ['name', 'key', 'secret', 'pair_whitelist']
|
||||
},
|
||||
'edge': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
"enabled": {'type': 'boolean'},
|
||||
"process_throttle_secs": {'type': 'integer', 'minimum': 600},
|
||||
"calculate_since_number_of_days": {'type': 'integer'},
|
||||
"allowed_risk": {'type': 'number'},
|
||||
"stoploss_range_min": {'type': 'number'},
|
||||
"stoploss_range_max": {'type': 'number'},
|
||||
"stoploss_range_step": {'type': 'number'},
|
||||
"minimum_winrate": {'type': 'number'},
|
||||
"minimum_expectancy": {'type': 'number'},
|
||||
"min_trade_number": {'type': 'number'},
|
||||
"max_trade_duration_minute": {'type': 'integer'},
|
||||
"remove_pumps": {'type': 'boolean'}
|
||||
}
|
||||
}
|
||||
},
|
||||
'anyOf': [
|
||||
|
408
freqtrade/edge/__init__.py
Normal file
408
freqtrade/edge/__init__.py
Normal file
@ -0,0 +1,408 @@
|
||||
# pragma pylint: disable=W0603
|
||||
""" Edge positioning package """
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
from collections import namedtuple
|
||||
import arrow
|
||||
|
||||
import numpy as np
|
||||
import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.strategy.interface import SellType
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Edge():
|
||||
"""
|
||||
Calculates Win Rate, Risk Reward Ratio, Expectancy
|
||||
against historical data for a give set of markets and a strategy
|
||||
it then adjusts stoploss and position size accordingly
|
||||
and force it into the strategy
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
config: Dict = {}
|
||||
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
# pair info data type
|
||||
_pair_info = namedtuple(
|
||||
'pair_info',
|
||||
['stoploss', 'winrate', 'risk_reward_ratio', 'required_risk_reward', 'expectancy'])
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
|
||||
|
||||
self.config = config
|
||||
self.exchange = exchange
|
||||
self.strategy = strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.get_timeframe = optimize.get_timeframe
|
||||
self.advise_sell = self.strategy.advise_sell
|
||||
self.advise_buy = self.strategy.advise_buy
|
||||
|
||||
self.edge_config = self.config.get('edge', {})
|
||||
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
self._total_capital: float = self.config['stake_amount']
|
||||
self._allowed_risk: float = self.edge_config.get('allowed_risk')
|
||||
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
|
||||
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
||||
|
||||
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
|
||||
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
|
||||
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
|
||||
|
||||
# calculating stoploss range
|
||||
self._stoploss_range = np.arange(
|
||||
self._stoploss_range_min,
|
||||
self._stoploss_range_max,
|
||||
self._stoploss_range_step
|
||||
)
|
||||
|
||||
self._timerange: TimeRange = Arguments.parse_timerange("%s-" % arrow.now().shift(
|
||||
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
|
||||
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
def calculate(self) -> bool:
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
heartbeat = self.edge_config.get('process_throttle_secs')
|
||||
|
||||
if (self._last_updated > 0) and (
|
||||
self._last_updated + heartbeat > arrow.utcnow().timestamp):
|
||||
return False
|
||||
|
||||
data: Dict[str, Any] = {}
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=True,
|
||||
exchange=self.exchange,
|
||||
timerange=self._timerange
|
||||
)
|
||||
|
||||
if not data:
|
||||
# Reinitializing cached pairs
|
||||
self._cached_pairs = {}
|
||||
logger.critical("No data found. Edge is stopped ...")
|
||||
return False
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days) ...',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
|
||||
trades: list = []
|
||||
for pair, pair_data in preprocessed.items():
|
||||
# Sorting dataframe by date and reset index
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
ticker_data = self.advise_sell(
|
||||
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
|
||||
|
||||
# If no trade found then exit
|
||||
if len(trades) == 0:
|
||||
return False
|
||||
|
||||
# Fill missing, calculable columns, profit, duration , abs etc.
|
||||
trades_df = self._fill_calculable_fields(DataFrame(trades))
|
||||
self._cached_pairs = self._process_expectancy(trades_df)
|
||||
self._last_updated = arrow.utcnow().timestamp
|
||||
|
||||
# Not a nice hack but probably simplest solution:
|
||||
# When backtest load data it loads the delta between disk and exchange
|
||||
# The problem is that exchange consider that recent.
|
||||
# it is but it is incomplete (c.f. _async_get_candle_history)
|
||||
# So it causes get_signal to exit cause incomplete ticker_hist
|
||||
# A patch to that would be update _pairs_last_refresh_time of exchange
|
||||
# so it will download again all pairs
|
||||
# Another solution is to add new data to klines instead of reassigning it:
|
||||
# self.klines[pair].update(data) instead of self.klines[pair] = data in exchange package.
|
||||
# But that means indexing timestamp and having a verification so that
|
||||
# there is no empty range between two timestaps (recently added and last
|
||||
# one)
|
||||
self.exchange._pairs_last_refresh_time = {}
|
||||
|
||||
return True
|
||||
|
||||
def stake_amount(self, pair: str) -> float:
|
||||
stoploss = self._cached_pairs[pair].stoploss
|
||||
allowed_capital_at_risk = round(self._total_capital * self._allowed_risk, 5)
|
||||
position_size = abs(round((allowed_capital_at_risk / stoploss), 5))
|
||||
return position_size
|
||||
|
||||
def stoploss(self, pair: str) -> float:
|
||||
return self._cached_pairs[pair].stoploss
|
||||
|
||||
def adjust(self, pairs) -> list:
|
||||
"""
|
||||
Filters out and sorts "pairs" according to Edge calculated pairs
|
||||
"""
|
||||
|
||||
final = []
|
||||
for pair, info in self._cached_pairs.items():
|
||||
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
|
||||
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
|
||||
pair in pairs:
|
||||
final.append(pair)
|
||||
|
||||
if final:
|
||||
logger.info('Edge validated only %s', final)
|
||||
else:
|
||||
logger.info('Edge removed all pairs as no pair with minimum expectancy was found !')
|
||||
|
||||
return final
|
||||
|
||||
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
|
||||
"""
|
||||
The result frame contains a number of columns that are calculable
|
||||
from other columns. These are left blank till all rows are added,
|
||||
to be populated in single vector calls.
|
||||
|
||||
Columns to be populated are:
|
||||
- Profit
|
||||
- trade duration
|
||||
- profit abs
|
||||
:param result Dataframe
|
||||
:return: result Dataframe
|
||||
"""
|
||||
|
||||
# stake and fees
|
||||
# stake = 0.015
|
||||
# 0.05% is 0.0005
|
||||
# fee = 0.001
|
||||
|
||||
stake = self.config.get('stake_amount')
|
||||
fee = self.fee
|
||||
|
||||
open_fee = fee / 2
|
||||
close_fee = fee / 2
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
|
||||
result['trade_duration'] = result['trade_duration'].map(
|
||||
lambda x: int(x.total_seconds() / 60))
|
||||
|
||||
# Spends, Takes, Profit, Absolute Profit
|
||||
|
||||
# Buy Price
|
||||
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
|
||||
result['buy_fee'] = stake * open_fee
|
||||
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
result['sell_sum'] = result['buy_vol'] * result['close_rate']
|
||||
result['sell_fee'] = result['sell_sum'] * close_fee
|
||||
result['sell_take'] = result['sell_sum'] - result['sell_fee']
|
||||
|
||||
# profit_percent
|
||||
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
|
||||
|
||||
# Absolute profit
|
||||
result['profit_abs'] = result['sell_take'] - result['buy_spend']
|
||||
|
||||
return result
|
||||
|
||||
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
|
||||
"""
|
||||
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
|
||||
The calulation will be done per pair and per strategy.
|
||||
"""
|
||||
# Removing pairs having less than min_trades_number
|
||||
min_trades_number = self.edge_config.get('min_trade_number', 10)
|
||||
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
|
||||
###################################
|
||||
|
||||
# Removing outliers (Only Pumps) from the dataset
|
||||
# The method to detect outliers is to calculate standard deviation
|
||||
# Then every value more than (standard deviation + 2*average) is out (pump)
|
||||
#
|
||||
# Removing Pumps
|
||||
if self.edge_config.get('remove_pumps', False):
|
||||
results = results.groupby(['pair', 'stoploss']).apply(
|
||||
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
|
||||
##########################################################################
|
||||
|
||||
# Removing trades having a duration more than X minutes (set in config)
|
||||
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
|
||||
results = results[results.trade_duration < max_trade_duration]
|
||||
#######################################################################
|
||||
|
||||
if results.empty:
|
||||
return {}
|
||||
|
||||
groupby_aggregator = {
|
||||
'profit_abs': [
|
||||
('nb_trades', 'count'), # number of all trades
|
||||
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
|
||||
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
|
||||
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
|
||||
],
|
||||
'trade_duration': [('avg_trade_duration', 'mean')]
|
||||
}
|
||||
|
||||
# Group by (pair and stoploss) by applying above aggregator
|
||||
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
|
||||
groupby_aggregator).reset_index(col_level=1)
|
||||
|
||||
# Dropping level 0 as we don't need it
|
||||
df.columns = df.columns.droplevel(0)
|
||||
|
||||
# Calculating number of losing trades, average win and average loss
|
||||
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
|
||||
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
|
||||
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
|
||||
|
||||
# Win rate = number of profitable trades / number of trades
|
||||
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
|
||||
|
||||
# risk_reward_ratio = average win / average loss
|
||||
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
|
||||
|
||||
# required_risk_reward = (1 / winrate) - 1
|
||||
df['required_risk_reward'] = (1 / df['winrate']) - 1
|
||||
|
||||
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
|
||||
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
|
||||
|
||||
# sort by expectancy and stoploss
|
||||
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
|
||||
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
|
||||
|
||||
final = {}
|
||||
for x in df.itertuples():
|
||||
info = {
|
||||
'stoploss': x.stoploss,
|
||||
'winrate': x.winrate,
|
||||
'risk_reward_ratio': x.risk_reward_ratio,
|
||||
'required_risk_reward': x.required_risk_reward,
|
||||
'expectancy': x.expectancy
|
||||
}
|
||||
final[x.pair] = self._pair_info(**info)
|
||||
|
||||
# Returning a list of pairs in order of "expectancy"
|
||||
return final
|
||||
|
||||
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
|
||||
buy_column = ticker_data['buy'].values
|
||||
sell_column = ticker_data['sell'].values
|
||||
date_column = ticker_data['date'].values
|
||||
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
|
||||
|
||||
result: list = []
|
||||
for stoploss in stoploss_range:
|
||||
result += self._detect_next_stop_or_sell_point(
|
||||
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
|
||||
ohlc_columns, stoploss, pair, start_point=0):
|
||||
"""
|
||||
Iterate through ohlc_columns recursively in order to find the next trade
|
||||
Next trade opens from the first buy signal noticed to
|
||||
The sell or stoploss signal after it.
|
||||
It then calls itself cutting OHLC, buy_column, sell_colum and date_column
|
||||
Cut from (the exit trade index) + 1
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
result: list = []
|
||||
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
|
||||
|
||||
# return empty if we don't find trade entry (i.e. buy==1) or
|
||||
# we find a buy but at the of array
|
||||
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
|
||||
return []
|
||||
else:
|
||||
open_trade_index += 1 # when a buy signal is seen,
|
||||
# trade opens in reality on the next candle
|
||||
|
||||
stop_price_percentage = stoploss + 1
|
||||
open_price = ohlc_columns[open_trade_index, 0]
|
||||
stop_price = (open_price * stop_price_percentage)
|
||||
|
||||
# Searching for the index where stoploss is hit
|
||||
stop_index = utf1st.find_1st(
|
||||
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
|
||||
|
||||
# If we don't find it then we assume stop_index will be far in future (infinite number)
|
||||
if stop_index == -1:
|
||||
stop_index = float('inf')
|
||||
|
||||
# Searching for the index where sell is hit
|
||||
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
|
||||
|
||||
# If we don't find it then we assume sell_index will be far in future (infinite number)
|
||||
if sell_index == -1:
|
||||
sell_index = float('inf')
|
||||
|
||||
# Check if we don't find any stop or sell point (in that case trade remains open)
|
||||
# It is not interesting for Edge to consider it so we simply ignore the trade
|
||||
# And stop iterating there is no more entry
|
||||
if stop_index == sell_index == float('inf'):
|
||||
return []
|
||||
|
||||
if stop_index <= sell_index:
|
||||
exit_index = open_trade_index + stop_index
|
||||
exit_type = SellType.STOP_LOSS
|
||||
exit_price = stop_price
|
||||
elif stop_index > sell_index:
|
||||
# if exit is SELL then we exit at the next candle
|
||||
exit_index = open_trade_index + sell_index + 1
|
||||
|
||||
# check if we have the next candle
|
||||
if len(ohlc_columns) - 1 < exit_index:
|
||||
return []
|
||||
|
||||
exit_type = SellType.SELL_SIGNAL
|
||||
exit_price = ohlc_columns[exit_index, 0]
|
||||
|
||||
trade = {'pair': pair,
|
||||
'stoploss': stoploss,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': date_column[open_trade_index],
|
||||
'close_time': date_column[exit_index],
|
||||
'open_index': start_point + open_trade_index,
|
||||
'close_index': start_point + exit_index,
|
||||
'trade_duration': '',
|
||||
'open_rate': round(open_price, 15),
|
||||
'close_rate': round(exit_price, 15),
|
||||
'exit_type': exit_type
|
||||
}
|
||||
|
||||
result.append(trade)
|
||||
|
||||
# Calling again the same function recursively but giving
|
||||
# it a view of exit_index till the end of array
|
||||
return result + self._detect_next_stop_or_sell_point(
|
||||
buy_column[exit_index:],
|
||||
sell_column[exit_index:],
|
||||
date_column[exit_index:],
|
||||
ohlc_columns[exit_index:],
|
||||
stoploss,
|
||||
pair,
|
||||
(start_point + exit_index)
|
||||
)
|
@ -17,6 +17,7 @@ from cachetools import TTLCache, cached
|
||||
from freqtrade import (DependencyException, OperationalException,
|
||||
TemporaryError, __version__, constants, persistence)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc import RPCManager, RPCMessageType
|
||||
from freqtrade.state import State
|
||||
@ -24,6 +25,7 @@ from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
from freqtrade.exchange.exchange_helpers import order_book_to_dataframe
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -54,6 +56,11 @@ class FreqtradeBot(object):
|
||||
self.rpc: RPCManager = RPCManager(self)
|
||||
self.persistence = None
|
||||
self.exchange = Exchange(self.config)
|
||||
|
||||
# Initializing Edge only if enabled
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
self.config.get('edge', {}).get('enabled', False) else None
|
||||
|
||||
self.active_pair_whitelist: List[str] = self.config['exchange']['pair_whitelist']
|
||||
self._init_modules()
|
||||
|
||||
@ -179,6 +186,17 @@ class FreqtradeBot(object):
|
||||
# Keep only the subsets of pairs wanted (up to nb_assets)
|
||||
self.active_pair_whitelist = sanitized_list[:nb_assets] if nb_assets else sanitized_list
|
||||
|
||||
# Calculating Edge positiong
|
||||
# Should be called before refresh_tickers
|
||||
# Otherwise it will override cached klines in exchange
|
||||
# with delta value (klines only from last refresh_pairs)
|
||||
if self.edge:
|
||||
self.edge.calculate()
|
||||
self.active_pair_whitelist = self.edge.adjust(self.active_pair_whitelist)
|
||||
|
||||
# Refreshing candles
|
||||
self.exchange.refresh_tickers(self.active_pair_whitelist, self.strategy.ticker_interval)
|
||||
|
||||
# Query trades from persistence layer
|
||||
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
|
||||
|
||||
@ -309,13 +327,17 @@ class FreqtradeBot(object):
|
||||
|
||||
return used_rate
|
||||
|
||||
def _get_trade_stake_amount(self) -> Optional[float]:
|
||||
def _get_trade_stake_amount(self, pair) -> Optional[float]:
|
||||
"""
|
||||
Check if stake amount can be fulfilled with the available balance
|
||||
for the stake currency
|
||||
:return: float: Stake Amount
|
||||
"""
|
||||
if self.edge:
|
||||
stake_amount = self.edge.stake_amount(pair)
|
||||
else:
|
||||
stake_amount = self.config['stake_amount']
|
||||
|
||||
avaliable_amount = self.exchange.get_balance(self.config['stake_currency'])
|
||||
|
||||
if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
@ -373,15 +395,6 @@ class FreqtradeBot(object):
|
||||
:return: True if a trade object has been created and persisted, False otherwise
|
||||
"""
|
||||
interval = self.strategy.ticker_interval
|
||||
stake_amount = self._get_trade_stake_amount()
|
||||
|
||||
if not stake_amount:
|
||||
return False
|
||||
|
||||
logger.info(
|
||||
'Checking buy signals to create a new trade with stake_amount: %f ...',
|
||||
stake_amount
|
||||
)
|
||||
whitelist = copy.deepcopy(self.active_pair_whitelist)
|
||||
|
||||
# Remove currently opened and latest pairs from whitelist
|
||||
@ -394,10 +407,18 @@ class FreqtradeBot(object):
|
||||
raise DependencyException('No currency pairs in whitelist')
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
# to find buy signals
|
||||
for _pair in whitelist:
|
||||
(buy, sell) = self.strategy.get_signal(_pair, interval, self.exchange.klines.get(_pair))
|
||||
if buy and not sell:
|
||||
stake_amount = self._get_trade_stake_amount(_pair)
|
||||
if not stake_amount:
|
||||
return False
|
||||
|
||||
logger.info(
|
||||
'Buy signal found: about create a new trade with stake_amount: %f ...',
|
||||
stake_amount
|
||||
)
|
||||
|
||||
bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\
|
||||
get('check_depth_of_market', {})
|
||||
if (bidstrat_check_depth_of_market.get('enabled', False)) and\
|
||||
@ -624,10 +645,16 @@ class FreqtradeBot(object):
|
||||
return False
|
||||
|
||||
def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool:
|
||||
if self.edge:
|
||||
stoploss = self.edge.stoploss(trade.pair)
|
||||
should_sell = self.strategy.should_sell(
|
||||
trade, sell_rate, datetime.utcnow(), buy, sell, force_stoploss=stoploss)
|
||||
else:
|
||||
should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell)
|
||||
|
||||
if should_sell.sell_flag:
|
||||
self.execute_sell(trade, sell_rate, should_sell.sell_type)
|
||||
logger.info('excuted sell')
|
||||
logger.info('executed sell, reason: %s', should_sell.sell_type)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
@ -410,7 +410,7 @@ class RPC(object):
|
||||
raise RPCException(f'position for {pair} already open - id: {trade.id}')
|
||||
|
||||
# gen stake amount
|
||||
stakeamount = self._freqtrade._get_trade_stake_amount()
|
||||
stakeamount = self._freqtrade._get_trade_stake_amount(pair)
|
||||
|
||||
# execute buy
|
||||
if self._freqtrade.execute_buy(pair, stakeamount, price):
|
||||
|
@ -203,17 +203,20 @@ class IStrategy(ABC):
|
||||
return buy, sell
|
||||
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
|
||||
sell: bool, low: float = None, high: float = None) -> SellCheckTuple:
|
||||
sell: bool, low: float = None, high: float = None,
|
||||
force_stoploss: float = 0) -> SellCheckTuple:
|
||||
"""
|
||||
This function evaluate if on the condition required to trigger a sell has been reached
|
||||
if the threshold is reached and updates the trade record.
|
||||
:return: True if trade should be sold, False otherwise
|
||||
"""
|
||||
|
||||
# Set current rate to low for backtesting sell
|
||||
current_rate = low or rate
|
||||
current_profit = trade.calc_profit_percent(current_rate)
|
||||
stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade,
|
||||
current_time=date, current_profit=current_profit)
|
||||
current_time=date, current_profit=current_profit,
|
||||
force_stoploss=force_stoploss)
|
||||
if stoplossflag.sell_flag:
|
||||
return stoplossflag
|
||||
# Set current rate to low for backtesting sell
|
||||
@ -241,7 +244,7 @@ class IStrategy(ABC):
|
||||
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
|
||||
|
||||
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime,
|
||||
current_profit: float) -> SellCheckTuple:
|
||||
current_profit: float, force_stoploss: float) -> SellCheckTuple:
|
||||
"""
|
||||
Based on current profit of the trade and configured (trailing) stoploss,
|
||||
decides to sell or not
|
||||
@ -250,7 +253,8 @@ class IStrategy(ABC):
|
||||
|
||||
trailing_stop = self.config.get('trailing_stop', False)
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, self.stoploss, initial=True)
|
||||
trade.adjust_stop_loss(trade.open_rate, force_stoploss if force_stoploss
|
||||
else self.stoploss, initial=True)
|
||||
|
||||
# evaluate if the stoploss was hit
|
||||
if self.stoploss is not None and trade.stop_loss >= current_rate:
|
||||
|
@ -4,6 +4,7 @@ import logging
|
||||
from datetime import datetime
|
||||
from functools import reduce
|
||||
from typing import Dict, Optional
|
||||
from collections import namedtuple
|
||||
from unittest.mock import MagicMock, PropertyMock
|
||||
|
||||
import arrow
|
||||
@ -12,6 +13,7 @@ from telegram import Chat, Message, Update
|
||||
|
||||
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
|
||||
logging.getLogger('').setLevel(logging.INFO)
|
||||
@ -42,7 +44,32 @@ def get_patched_exchange(mocker, config, api_mock=None) -> Exchange:
|
||||
return exchange
|
||||
|
||||
|
||||
def patch_edge(mocker) -> None:
|
||||
# "ETH/BTC",
|
||||
# "LTC/BTC",
|
||||
# "XRP/BTC",
|
||||
# "NEO/BTC"
|
||||
pair_info = namedtuple(
|
||||
'pair_info',
|
||||
'stoploss, winrate, risk_reward_ratio, required_risk_reward, expectancy')
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'NEO/BTC': pair_info(-0.20, 0.66, 3.71, 0.50, 1.71),
|
||||
'LTC/BTC': pair_info(-0.21, 0.66, 3.71, 0.50, 1.71),
|
||||
}
|
||||
))
|
||||
mocker.patch('freqtrade.edge.Edge.stoploss', MagicMock(return_value=-0.20))
|
||||
mocker.patch('freqtrade.edge.Edge.calculate', MagicMock(return_value=True))
|
||||
|
||||
|
||||
def get_patched_edge(mocker, config) -> Edge:
|
||||
patch_edge(mocker)
|
||||
edge = Edge(config)
|
||||
return edge
|
||||
|
||||
# Functions for recurrent object patching
|
||||
|
||||
|
||||
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
|
||||
"""
|
||||
This function patch _init_modules() to not call dependencies
|
||||
@ -752,3 +779,23 @@ def buy_order_fee():
|
||||
'status': 'closed',
|
||||
'fee': None
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def edge_conf(default_conf):
|
||||
default_conf['edge'] = {
|
||||
"enabled": True,
|
||||
"process_throttle_secs": 1800,
|
||||
"calculate_since_number_of_days": 14,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"maximum_winrate": 0.80,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 15,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": False
|
||||
}
|
||||
|
||||
return default_conf
|
||||
|
0
freqtrade/tests/edge/__init__.py
Normal file
0
freqtrade/tests/edge/__init__.py
Normal file
310
freqtrade/tests/edge/test_edge.py
Normal file
310
freqtrade/tests/edge/test_edge.py
Normal file
@ -0,0 +1,310 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103, C0330
|
||||
# pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments
|
||||
|
||||
import pytest
|
||||
import logging
|
||||
from freqtrade.tests.conftest import get_patched_freqtradebot
|
||||
from freqtrade.edge import Edge
|
||||
from pandas import DataFrame, to_datetime
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.tests.optimize import (BTrade, BTContainer, _build_backtest_dataframe,
|
||||
_get_frame_time_from_offset)
|
||||
import arrow
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
# Cases to be tested:
|
||||
# 1) Open trade should be removed from the end
|
||||
# 2) Two complete trades within dataframe (with sell hit for all)
|
||||
# 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss
|
||||
# 4) Entered, sl 3%, candle drops 4%, recovers to 1% => Trade closed, 3% loss
|
||||
# 5) Stoploss and sell are hit. should sell on stoploss
|
||||
####################################################################
|
||||
|
||||
ticker_start_time = arrow.get(2018, 10, 3)
|
||||
ticker_interval_in_minute = 60
|
||||
_ohlc = {'date': 0, 'buy': 1, 'open': 2, 'high': 3, 'low': 4, 'close': 5, 'sell': 6, 'volume': 7}
|
||||
|
||||
|
||||
# Open trade should be removed from the end
|
||||
tc0 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 1]], # enter trade (signal on last candle)
|
||||
stop_loss=-0.99, roi=float('inf'), profit_perc=0.00,
|
||||
trades=[]
|
||||
)
|
||||
|
||||
# Two complete trades within dataframe(with sell hit for all)
|
||||
tc1 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 1], # enter trade (signal on last candle)
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0], # exit at open
|
||||
[3, 5000, 5025, 4975, 4987, 6172, 1, 0], # no action
|
||||
[4, 5000, 5025, 4975, 4987, 6172, 0, 0], # should enter the trade
|
||||
[5, 5000, 5025, 4975, 4987, 6172, 0, 1], # no action
|
||||
[6, 5000, 5025, 4975, 4987, 6172, 0, 0], # should sell
|
||||
],
|
||||
stop_loss=-0.99, roi=float('inf'), profit_perc=0.00,
|
||||
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=2),
|
||||
BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=4, close_tick=6)]
|
||||
)
|
||||
|
||||
# 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss
|
||||
tc2 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4600, 4987, 6172, 0, 0], # enter trade, stoploss hit
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.01, roi=float('inf'), profit_perc=-0.01,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
# 4) Entered, sl 3 %, candle drops 4%, recovers to 1 % = > Trade closed, 3 % loss
|
||||
tc3 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4800, 4987, 6172, 0, 0], # enter trade, stoploss hit
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.03, roi=float('inf'), profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
# 5) Stoploss and sell are hit. should sell on stoploss
|
||||
tc4 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4800, 4987, 6172, 0, 1], # enter trade, stoploss hit, sell signal
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.03, roi=float('inf'), profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
TESTS = [
|
||||
tc0,
|
||||
tc1,
|
||||
tc2,
|
||||
tc3,
|
||||
tc4
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("data", TESTS)
|
||||
def test_edge_results(edge_conf, mocker, caplog, data) -> None:
|
||||
"""
|
||||
run functional tests
|
||||
"""
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
frame = _build_backtest_dataframe(data.data)
|
||||
caplog.set_level(logging.DEBUG)
|
||||
edge.fee = 0
|
||||
|
||||
trades = edge._find_trades_for_stoploss_range(frame, 'TEST/BTC', [data.stop_loss])
|
||||
results = edge._fill_calculable_fields(DataFrame(trades)) if trades else DataFrame()
|
||||
|
||||
print(results)
|
||||
|
||||
assert len(trades) == len(data.trades)
|
||||
|
||||
if not results.empty:
|
||||
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
|
||||
|
||||
for c, trade in enumerate(data.trades):
|
||||
res = results.iloc[c]
|
||||
assert res.exit_type == trade.sell_reason
|
||||
assert res.open_time == _get_frame_time_from_offset(trade.open_tick)
|
||||
assert res.close_time == _get_frame_time_from_offset(trade.close_tick)
|
||||
|
||||
|
||||
def test_adjust(mocker, default_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'E/F': Edge._pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
|
||||
'C/D': Edge._pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
|
||||
'N/O': Edge._pair_info(-0.01, 0.66, 3.71, 0.50, 1.71)
|
||||
}
|
||||
))
|
||||
|
||||
pairs = ['A/B', 'C/D', 'E/F', 'G/H']
|
||||
assert(edge.adjust(pairs) == ['E/F', 'C/D'])
|
||||
|
||||
|
||||
def test_stoploss(mocker, default_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'E/F': Edge._pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
|
||||
'C/D': Edge._pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
|
||||
'N/O': Edge._pair_info(-0.01, 0.66, 3.71, 0.50, 1.71)
|
||||
}
|
||||
))
|
||||
|
||||
assert edge.stoploss('E/F') == -0.01
|
||||
|
||||
|
||||
def _validate_ohlc(buy_ohlc_sell_matrice):
|
||||
for index, ohlc in enumerate(buy_ohlc_sell_matrice):
|
||||
# if not high < open < low or not high < close < low
|
||||
if not ohlc[3] >= ohlc[2] >= ohlc[4] or not ohlc[3] >= ohlc[5] >= ohlc[4]:
|
||||
raise Exception('Line ' + str(index + 1) + ' of ohlc has invalid values!')
|
||||
return True
|
||||
|
||||
|
||||
def _build_dataframe(buy_ohlc_sell_matrice):
|
||||
_validate_ohlc(buy_ohlc_sell_matrice)
|
||||
tickers = []
|
||||
for ohlc in buy_ohlc_sell_matrice:
|
||||
ticker = {
|
||||
'date': ticker_start_time.shift(
|
||||
minutes=(
|
||||
ohlc[0] *
|
||||
ticker_interval_in_minute)).timestamp *
|
||||
1000,
|
||||
'buy': ohlc[1],
|
||||
'open': ohlc[2],
|
||||
'high': ohlc[3],
|
||||
'low': ohlc[4],
|
||||
'close': ohlc[5],
|
||||
'sell': ohlc[6]}
|
||||
tickers.append(ticker)
|
||||
|
||||
frame = DataFrame(tickers)
|
||||
frame['date'] = to_datetime(frame['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def _time_on_candle(number):
|
||||
return np.datetime64(ticker_start_time.shift(
|
||||
minutes=(number * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
||||
|
||||
|
||||
def test_edge_heartbeat_calculate(mocker, edge_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
heartbeat = edge_conf['edge']['process_throttle_secs']
|
||||
|
||||
# should not recalculate if heartbeat not reached
|
||||
edge._last_updated = arrow.utcnow().timestamp - heartbeat + 1
|
||||
|
||||
assert edge.calculate() is False
|
||||
|
||||
|
||||
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
|
||||
timerange=None, exchange=None):
|
||||
hz = 0.1
|
||||
base = 0.001
|
||||
|
||||
ETHBTC = [
|
||||
[
|
||||
ticker_start_time.shift(minutes=(x * ticker_interval_in_minute)).timestamp * 1000,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
123.45
|
||||
] for x in range(0, 500)]
|
||||
|
||||
hz = 0.2
|
||||
base = 0.002
|
||||
LTCBTC = [
|
||||
[
|
||||
ticker_start_time.shift(minutes=(x * ticker_interval_in_minute)).timestamp * 1000,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
123.45
|
||||
] for x in range(0, 500)]
|
||||
|
||||
pairdata = {'NEO/BTC': ETHBTC, 'LTC/BTC': LTCBTC}
|
||||
return pairdata
|
||||
|
||||
|
||||
def test_edge_process_downloaded_data(mocker, default_conf):
|
||||
default_conf['datadir'] = None
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001))
|
||||
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
|
||||
assert edge.calculate()
|
||||
assert len(edge._cached_pairs) == 2
|
||||
assert edge._last_updated <= arrow.utcnow().timestamp + 2
|
||||
|
||||
|
||||
def test_process_expectancy(mocker, edge_conf):
|
||||
edge_conf['edge']['min_trade_number'] = 2
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
|
||||
def get_fee():
|
||||
return 0.001
|
||||
|
||||
freqtrade.exchange.get_fee = get_fee
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
|
||||
trades = [
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:05:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:10:00.000000000'),
|
||||
'open_index': 1,
|
||||
'close_index': 1,
|
||||
'trade_duration': '',
|
||||
'open_rate': 17,
|
||||
'close_rate': 17,
|
||||
'exit_type': 'sell_signal'},
|
||||
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:20:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:25:00.000000000'),
|
||||
'open_index': 4,
|
||||
'close_index': 4,
|
||||
'trade_duration': '',
|
||||
'open_rate': 20,
|
||||
'close_rate': 20,
|
||||
'exit_type': 'sell_signal'},
|
||||
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:30:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:40:00.000000000'),
|
||||
'open_index': 6,
|
||||
'close_index': 7,
|
||||
'trade_duration': '',
|
||||
'open_rate': 26,
|
||||
'close_rate': 34,
|
||||
'exit_type': 'sell_signal'}
|
||||
]
|
||||
|
||||
trades_df = DataFrame(trades)
|
||||
trades_df = edge._fill_calculable_fields(trades_df)
|
||||
final = edge._process_expectancy(trades_df)
|
||||
assert len(final) == 1
|
||||
|
||||
assert 'TEST/BTC' in final
|
||||
assert final['TEST/BTC'].stoploss == -0.9
|
||||
assert round(final['TEST/BTC'].winrate, 10) == 0.3333333333
|
||||
assert round(final['TEST/BTC'].risk_reward_ratio, 10) == 306.5384615384
|
||||
assert round(final['TEST/BTC'].required_risk_reward, 10) == 2.0
|
||||
assert round(final['TEST/BTC'].expectancy, 10) == 101.5128205128
|
@ -31,7 +31,7 @@ class BTContainer(NamedTuple):
|
||||
|
||||
def _get_frame_time_from_offset(offset):
|
||||
return ticker_start_time.shift(
|
||||
minutes=(offset * ticker_interval_in_minute)).datetime
|
||||
minutes=(offset * ticker_interval_in_minute)).datetime.replace(tzinfo=None)
|
||||
|
||||
|
||||
def _build_backtest_dataframe(ticker_with_signals):
|
||||
|
@ -1,4 +1,4 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, C0330, unused-argument
|
||||
import logging
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
|
@ -18,7 +18,7 @@ from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc import RPCMessageType
|
||||
from freqtrade.state import State
|
||||
from freqtrade.strategy.interface import SellType, SellCheckTuple
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange, patch_edge
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
@ -177,7 +177,7 @@ def test_get_trade_stake_amount(default_conf, ticker, limit_buy_order, fee, mock
|
||||
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
assert result == default_conf['stake_amount']
|
||||
|
||||
|
||||
@ -195,7 +195,7 @@ def test_get_trade_stake_amount_no_stake_amount(default_conf,
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
|
||||
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
|
||||
freqtrade._get_trade_stake_amount()
|
||||
freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
|
||||
|
||||
def test_get_trade_stake_amount_unlimited_amount(default_conf,
|
||||
@ -224,28 +224,131 @@ def test_get_trade_stake_amount_unlimited_amount(default_conf,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
# no open trades, order amount should be 'balance / max_open_trades'
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
assert result == default_conf['stake_amount'] / conf['max_open_trades']
|
||||
|
||||
# create one trade, order amount should be 'balance / (max_open_trades - num_open_trades)'
|
||||
freqtrade.create_trade()
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('LTC/BTC')
|
||||
assert result == default_conf['stake_amount'] / (conf['max_open_trades'] - 1)
|
||||
|
||||
# create 2 trades, order amount should be None
|
||||
freqtrade.create_trade()
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('XRP/BTC')
|
||||
assert result is None
|
||||
|
||||
# set max_open_trades = None, so do not trade
|
||||
conf['max_open_trades'] = 0
|
||||
freqtrade = FreqtradeBot(conf)
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('NEO/BTC')
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_edge_called_in_process(mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
def _refresh_whitelist(list):
|
||||
return ['ETH/BTC', 'LTC/BTC', 'XRP/BTC', 'NEO/BTC']
|
||||
|
||||
patch_exchange(mocker)
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade._refresh_whitelist = _refresh_whitelist
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade._process()
|
||||
assert freqtrade.active_pair_whitelist == ['NEO/BTC', 'LTC/BTC']
|
||||
|
||||
|
||||
def test_edge_overrides_stake_amount(mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
|
||||
assert freqtrade._get_trade_stake_amount('NEO/BTC') == (0.001 * 0.01) / 0.20
|
||||
assert freqtrade._get_trade_stake_amount('LTC/BTC') == (0.001 * 0.01) / 0.20
|
||||
|
||||
|
||||
def test_edge_overrides_stoploss(limit_buy_order, fee, markets, caplog, mocker, edge_conf) -> None:
|
||||
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
# Strategy stoploss is -0.1 but Edge imposes a stoploss at -0.2
|
||||
# Thus, if price falls 21%, stoploss should be triggered
|
||||
#
|
||||
# mocking the ticker: price is falling ...
|
||||
buy_price = limit_buy_order['price']
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': buy_price * 0.79,
|
||||
'ask': buy_price * 0.79,
|
||||
'last': buy_price * 0.79
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets,
|
||||
)
|
||||
#############################################
|
||||
|
||||
# Create a trade with "limit_buy_order" price
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade.active_pair_whitelist = ['NEO/BTC']
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.min_roi_reached = lambda trade, current_profit, current_time: False
|
||||
freqtrade.create_trade()
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
#############################################
|
||||
|
||||
# stoploss shoud be hit
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert log_has('executed sell, reason: SellType.STOP_LOSS', caplog.record_tuples)
|
||||
assert trade.sell_reason == SellType.STOP_LOSS.value
|
||||
|
||||
|
||||
def test_edge_should_ignore_strategy_stoploss(limit_buy_order, fee, markets,
|
||||
mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
# Strategy stoploss is -0.1 but Edge imposes a stoploss at -0.2
|
||||
# Thus, if price falls 15%, stoploss should not be triggered
|
||||
#
|
||||
# mocking the ticker: price is falling ...
|
||||
buy_price = limit_buy_order['price']
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': buy_price * 0.85,
|
||||
'ask': buy_price * 0.85,
|
||||
'last': buy_price * 0.85
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets,
|
||||
)
|
||||
#############################################
|
||||
|
||||
# Create a trade with "limit_buy_order" price
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade.active_pair_whitelist = ['NEO/BTC']
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.min_roi_reached = lambda trade, current_profit, current_time: False
|
||||
freqtrade.create_trade()
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
#############################################
|
||||
|
||||
# stoploss shoud not be hit
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
|
||||
|
||||
def test_get_min_pair_stake_amount(mocker, default_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
@ -494,7 +597,7 @@ def test_create_trade_limit_reached(default_conf, ticker, limit_buy_order,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
assert freqtrade.create_trade() is False
|
||||
assert freqtrade._get_trade_stake_amount() is None
|
||||
assert freqtrade._get_trade_stake_amount('ETH/BTC') is None
|
||||
|
||||
|
||||
def test_create_trade_no_pairs(default_conf, ticker, limit_buy_order, fee, markets, mocker) -> None:
|
||||
@ -593,7 +696,7 @@ def test_process_trade_creation(default_conf, ticker, limit_buy_order,
|
||||
assert trade.amount == 90.99181073703367
|
||||
|
||||
assert log_has(
|
||||
'Checking buy signals to create a new trade with stake_amount: 0.001000 ...',
|
||||
'Buy signal found: about create a new trade with stake_amount: 0.001000 ...',
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
@ -1547,7 +1650,7 @@ def test_sell_profit_only_enable_loss(default_conf, limit_buy_order, fee, market
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.stop_loss_reached = \
|
||||
lambda current_rate, trade, current_time, current_profit: SellCheckTuple(
|
||||
lambda current_rate, trade, current_time, force_stoploss, current_profit: SellCheckTuple(
|
||||
sell_flag=False, sell_type=SellType.NONE)
|
||||
freqtrade.create_trade()
|
||||
|
||||
|
@ -24,3 +24,9 @@ scikit-optimize==0.5.2
|
||||
|
||||
# Required for plotting data
|
||||
#plotly==3.1.1
|
||||
|
||||
# find first, C search in arrays
|
||||
py_find_1st==1.1.2
|
||||
|
||||
#Load ticker files 30% faster
|
||||
ujson==1.35
|
||||
|
Loading…
Reference in New Issue
Block a user