add backtesting results abs profit min/abs profit max, to get a better view if a strategy has a enough money to succeed
This commit is contained in:
committed by
Matthias
parent
10a11bda34
commit
5c263c7ffd
@@ -383,3 +383,21 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date'
|
||||
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
|
||||
low_date = profit_results.loc[idxmin, date_col]
|
||||
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date
|
||||
|
||||
|
||||
def calculate_csum(trades: pd.DataFrame) -> Tuple[float, float]:
|
||||
"""
|
||||
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
||||
:return: Tuple (float, float) with cumsum of profit_abs
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
raise ValueError("Trade dataframe empty.")
|
||||
|
||||
csum_df = pd.DataFrame()
|
||||
csum_df['sum'] = trades['profit_abs'].cumsum()
|
||||
csum_min = csum_df['sum'].min()
|
||||
csum_max = csum_df['sum'].max()
|
||||
|
||||
return csum_min, csum_max
|
||||
|
Reference in New Issue
Block a user