Merge branch 'develop' into sandbox2
This commit is contained in:
@@ -39,7 +39,6 @@ A strategy file contains all the information needed to build a good strategy:
|
||||
- Sell strategy rules
|
||||
- Minimal ROI recommended
|
||||
- Stoploss recommended
|
||||
- Hyperopt parameter
|
||||
|
||||
The bot also include a sample strategy called `TestStrategy` you can update: `user_data/strategies/test_strategy.py`.
|
||||
You can test it with the parameter: `--strategy TestStrategy`
|
||||
@@ -61,22 +60,22 @@ file as reference.**
|
||||
|
||||
### Buy strategy
|
||||
|
||||
Edit the method `populate_buy_trend()` into your strategy file to
|
||||
update your buy strategy.
|
||||
Edit the method `populate_buy_trend()` into your strategy file to update your buy strategy.
|
||||
|
||||
Sample from `user_data/strategies/test_strategy.py`:
|
||||
|
||||
```python
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] <= dataframe['blower']) &
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1))
|
||||
),
|
||||
'buy'] = 1
|
||||
@@ -87,38 +86,47 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
### Sell strategy
|
||||
|
||||
Edit the method `populate_sell_trend()` into your strategy file to update your sell strategy.
|
||||
Please note that the sell-signal is only used if `use_sell_signal` is set to true in the configuration.
|
||||
|
||||
Sample from `user_data/strategies/test_strategy.py`:
|
||||
|
||||
```python
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] > dataframe['blower']) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
```
|
||||
|
||||
## Add more Indicator
|
||||
## Add more Indicators
|
||||
|
||||
As you have seen, buy and sell strategies need indicators. You can add
|
||||
more indicators by extending the list contained in
|
||||
the method `populate_indicators()` from your strategy file.
|
||||
As you have seen, buy and sell strategies need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
|
||||
|
||||
You should only add the indicators used in either `populate_buy_trend()`, `populate_sell_trend()`, or to populate another indicator, otherwise performance may suffer.
|
||||
|
||||
Sample:
|
||||
|
||||
```python
|
||||
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
@@ -149,6 +157,11 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
return dataframe
|
||||
```
|
||||
|
||||
### Metadata dict
|
||||
|
||||
The metadata-dict (available for `populate_buy_trend`, `populate_sell_trend`, `populate_indicators`) contains additional information.
|
||||
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
|
||||
|
||||
### Want more indicator examples
|
||||
|
||||
Look into the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
|
||||
|
@@ -27,6 +27,7 @@ The table below will list all configuration parameters.
|
||||
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
|
||||
| `trailing_stoploss` | false | No | Enables trailing stop-loss (based on `stoploss` in either configuration or strategy file).
|
||||
| `trailing_stoploss_positve` | 0 | No | Changes stop-loss once profit has been reached.
|
||||
| `trailing_stoploss_positve_offset` | 0 | No | Offset on when to apply `trailing_stoploss_positive`. Percentage value which should be positive.
|
||||
| `unfilledtimeout.buy` | 10 | Yes | How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled.
|
||||
| `unfilledtimeout.sell` | 10 | Yes | How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled.
|
||||
| `bid_strategy.ask_last_balance` | 0.0 | Yes | Set the bidding price. More information below.
|
||||
|
@@ -35,14 +35,17 @@ basically what this means is that your stop loss will be adjusted to be always b
|
||||
|
||||
### Custom positive loss
|
||||
|
||||
Due to demand, it is possible to have a default stop loss, when you are in the red with your buy, but once your buy turns positive,
|
||||
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you are in the
|
||||
black, it will be changed to be only a 1% stop loss
|
||||
Due to demand, it is possible to have a default stop loss, when you are in the red with your buy, but once your profit surpasses a certain percentage,
|
||||
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you have 1.1% profit,
|
||||
it will be changed to be only a 1% stop loss, which trails the green candles until it goes below them.
|
||||
|
||||
This can be configured in the main configuration file and requires `"trailing_stop": true` to be set to true.
|
||||
Both values can be configured in the main configuration file and requires `"trailing_stop": true` to be set to true.
|
||||
|
||||
``` json
|
||||
"trailing_stop_positive": 0.01,
|
||||
"trailing_stop_positive_offset": 0.011,
|
||||
```
|
||||
|
||||
The 0.01 would translate to a 1% stop loss, once you hit profit.
|
||||
The 0.01 would translate to a 1% stop loss, once you hit 1.1% profit.
|
||||
|
||||
You should also make sure to have this value higher than your minimal ROI, otherwise minimal ROI will apply first and sell your trade.
|
||||
|
Reference in New Issue
Block a user