Add support for collating and analysing rejected trades in backtest
This commit is contained in:
@@ -15,22 +15,30 @@ from freqtrade.exceptions import OperationalException
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _load_signal_candles(backtest_dir: Path):
|
||||
def _load_backtest_analysis_data(backtest_dir: Path, name: str):
|
||||
if backtest_dir.is_dir():
|
||||
scpf = Path(backtest_dir,
|
||||
Path(get_latest_backtest_filename(backtest_dir)).stem + "_signals.pkl"
|
||||
Path(get_latest_backtest_filename(backtest_dir)).stem + "_" + name + ".pkl"
|
||||
)
|
||||
else:
|
||||
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_signals.pkl")
|
||||
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_{name}.pkl")
|
||||
|
||||
try:
|
||||
scp = open(scpf, "rb")
|
||||
signal_candles = joblib.load(scp)
|
||||
logger.info(f"Loaded signal candles: {str(scpf)}")
|
||||
rejected_trades = joblib.load(scp)
|
||||
logger.info(f"Loaded {name} data: {str(scpf)}")
|
||||
except Exception as e:
|
||||
logger.error("Cannot load signal candles from pickled results: ", e)
|
||||
logger.error(f"Cannot load {name} data from pickled results: ", e)
|
||||
|
||||
return signal_candles
|
||||
return rejected_trades
|
||||
|
||||
|
||||
def _load_rejected_trades(backtest_dir: Path):
|
||||
return _load_backtest_analysis_data(backtest_dir, "rejected")
|
||||
|
||||
|
||||
def _load_signal_candles(backtest_dir: Path):
|
||||
return _load_backtest_analysis_data(backtest_dir, "signals")
|
||||
|
||||
|
||||
def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_candles):
|
||||
@@ -43,9 +51,9 @@ def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_cand
|
||||
for pair in pairlist:
|
||||
if pair in signal_candles[strategy_name]:
|
||||
analysed_trades_dict[strategy_name][pair] = _analyze_candles_and_indicators(
|
||||
pair,
|
||||
trades,
|
||||
signal_candles[strategy_name][pair])
|
||||
pair,
|
||||
trades,
|
||||
signal_candles[strategy_name][pair])
|
||||
except Exception as e:
|
||||
print(f"Cannot process entry/exit reasons for {strategy_name}: ", e)
|
||||
|
||||
@@ -85,7 +93,7 @@ def _analyze_candles_and_indicators(pair, trades, signal_candles):
|
||||
return pd.DataFrame()
|
||||
|
||||
|
||||
def _do_group_table_output(bigdf, glist):
|
||||
def _do_group_table_output(bigdf, glist, to_csv=False, csv_path=None):
|
||||
for g in glist:
|
||||
# 0: summary wins/losses grouped by enter tag
|
||||
if g == "0":
|
||||
@@ -116,7 +124,8 @@ def _do_group_table_output(bigdf, glist):
|
||||
|
||||
sortcols = ['total_num_buys']
|
||||
|
||||
_print_table(new, sortcols, show_index=True)
|
||||
_print_table(new, sortcols, show_index=True, name="Group 0:",
|
||||
to_csv=to_csv, csv_path=csv_path)
|
||||
|
||||
else:
|
||||
agg_mask = {'profit_abs': ['count', 'sum', 'median', 'mean'],
|
||||
@@ -148,11 +157,23 @@ def _do_group_table_output(bigdf, glist):
|
||||
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
|
||||
new['total_profit_pct'] = new['total_profit_pct'] * 100
|
||||
|
||||
_print_table(new, sortcols)
|
||||
_print_table(new, sortcols, name=f"Group {g}:",
|
||||
to_csv=to_csv, csv_path=csv_path)
|
||||
else:
|
||||
logger.warning("Invalid group mask specified.")
|
||||
|
||||
|
||||
def _do_rejected_trades_output(rejected_trades_df, to_csv=False, csv_path=None):
|
||||
cols = ['pair', 'date', 'enter_tag']
|
||||
sortcols = ['date', 'pair', 'enter_tag']
|
||||
_print_table(rejected_trades_df[cols],
|
||||
sortcols,
|
||||
show_index=False,
|
||||
name="Rejected Trades:",
|
||||
to_csv=to_csv,
|
||||
csv_path=csv_path)
|
||||
|
||||
|
||||
def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
@@ -186,38 +207,65 @@ def prepare_results(analysed_trades, stratname,
|
||||
return res_df
|
||||
|
||||
|
||||
def print_results(res_df, analysis_groups, indicator_list):
|
||||
def print_results(res_df, analysis_groups, indicator_list,
|
||||
rejected_trades=None, to_csv=False, csv_path=None):
|
||||
if res_df.shape[0] > 0:
|
||||
if analysis_groups:
|
||||
_do_group_table_output(res_df, analysis_groups)
|
||||
_do_group_table_output(res_df, analysis_groups, to_csv=to_csv, csv_path=csv_path)
|
||||
|
||||
if rejected_trades is not None and not rejected_trades.empty:
|
||||
_do_rejected_trades_output(rejected_trades, to_csv=to_csv, csv_path=csv_path)
|
||||
|
||||
# NB this can be large for big dataframes!
|
||||
if "all" in indicator_list:
|
||||
print(res_df)
|
||||
elif indicator_list is not None:
|
||||
_print_table(res_df,
|
||||
show_index=False,
|
||||
name="Indicators:",
|
||||
to_csv=to_csv,
|
||||
csv_path=csv_path)
|
||||
elif indicator_list is not None and indicator_list:
|
||||
available_inds = []
|
||||
for ind in indicator_list:
|
||||
if ind in res_df:
|
||||
available_inds.append(ind)
|
||||
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
|
||||
_print_table(res_df[ilist], sortcols=['exit_reason'], show_index=False)
|
||||
_print_table(res_df[ilist],
|
||||
sortcols=['exit_reason'],
|
||||
show_index=False,
|
||||
name="Indicators:",
|
||||
to_csv=to_csv,
|
||||
csv_path=csv_path)
|
||||
else:
|
||||
print("\\No trades to show")
|
||||
|
||||
|
||||
def _print_table(df, sortcols=None, show_index=False):
|
||||
def _print_table(df, sortcols=None, show_index=False, name=None, to_csv=False, csv_path=None):
|
||||
if (sortcols is not None):
|
||||
data = df.sort_values(sortcols)
|
||||
else:
|
||||
data = df
|
||||
|
||||
print(
|
||||
tabulate(
|
||||
data,
|
||||
headers='keys',
|
||||
tablefmt='psql',
|
||||
showindex=show_index
|
||||
if to_csv:
|
||||
if csv_path is not None:
|
||||
safe_name = Path(csv_path,
|
||||
name.lower().replace(" ", "_").replace(":", ""))
|
||||
else:
|
||||
safe_name = Path("user_data",
|
||||
"backtest_results",
|
||||
name.lower().replace(" ", "_").replace(":", ""))
|
||||
data.to_csv(f"{str(safe_name)}.csv")
|
||||
else:
|
||||
if name is not None:
|
||||
print(name)
|
||||
|
||||
print(
|
||||
tabulate(
|
||||
data,
|
||||
headers='keys',
|
||||
tablefmt='psql',
|
||||
showindex=show_index
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def process_entry_exit_reasons(config: Config):
|
||||
@@ -226,6 +274,9 @@ def process_entry_exit_reasons(config: Config):
|
||||
enter_reason_list = config.get('enter_reason_list', ["all"])
|
||||
exit_reason_list = config.get('exit_reason_list', ["all"])
|
||||
indicator_list = config.get('indicator_list', [])
|
||||
do_rejected = config.get('analysis_rejected', False)
|
||||
to_csv = config.get('analysis_to_csv', False)
|
||||
csv_path = config.get('analysis_csv_path', config['exportfilename'])
|
||||
|
||||
timerange = TimeRange.parse_timerange(None if config.get(
|
||||
'timerange') is None else str(config.get('timerange')))
|
||||
@@ -235,8 +286,16 @@ def process_entry_exit_reasons(config: Config):
|
||||
for strategy_name, results in backtest_stats['strategy'].items():
|
||||
trades = load_backtest_data(config['exportfilename'], strategy_name)
|
||||
|
||||
if not trades.empty:
|
||||
if trades is not None and not trades.empty:
|
||||
signal_candles = _load_signal_candles(config['exportfilename'])
|
||||
|
||||
rej_df = None
|
||||
if do_rejected:
|
||||
rejected_trades_dict = _load_rejected_trades(config['exportfilename'])
|
||||
rej_df = prepare_results(rejected_trades_dict, strategy_name,
|
||||
enter_reason_list, exit_reason_list,
|
||||
timerange=timerange)
|
||||
|
||||
analysed_trades_dict = _process_candles_and_indicators(
|
||||
config['exchange']['pair_whitelist'], strategy_name,
|
||||
trades, signal_candles)
|
||||
@@ -247,7 +306,10 @@ def process_entry_exit_reasons(config: Config):
|
||||
|
||||
print_results(res_df,
|
||||
analysis_groups,
|
||||
indicator_list)
|
||||
indicator_list,
|
||||
rejected_trades=rej_df,
|
||||
to_csv=to_csv,
|
||||
csv_path=csv_path)
|
||||
|
||||
except ValueError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
Reference in New Issue
Block a user