cleanup tensorboard callback
This commit is contained in:
parent
b9f6911a6a
commit
58604c747e
@ -137,15 +137,9 @@ class BaseEnvironment(gym.Env):
|
|||||||
Reset is called at the beginning of every episode
|
Reset is called at the beginning of every episode
|
||||||
"""
|
"""
|
||||||
# custom_info is used for episodic reports and tensorboard logging
|
# custom_info is used for episodic reports and tensorboard logging
|
||||||
self.custom_info["Invalid"] = 0
|
self.custom_info: dict = {}
|
||||||
self.custom_info["Hold"] = 0
|
|
||||||
self.custom_info["Unknown"] = 0
|
|
||||||
self.custom_info["pnl_factor"] = 0
|
|
||||||
self.custom_info["duration_factor"] = 0
|
|
||||||
self.custom_info["reward_exit"] = 0
|
|
||||||
self.custom_info["reward_hold"] = 0
|
|
||||||
for action in self.actions:
|
for action in self.actions:
|
||||||
self.custom_info[f"{action.name}"] = 0
|
self.custom_info[action.name] = 0
|
||||||
|
|
||||||
self._done = False
|
self._done = False
|
||||||
|
|
||||||
|
@ -42,19 +42,18 @@ class TensorboardCallback(BaseCallback):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def _on_step(self) -> bool:
|
def _on_step(self) -> bool:
|
||||||
|
|
||||||
|
local_info = self.locals["infos"][0]
|
||||||
custom_info = self.training_env.get_attr("custom_info")[0]
|
custom_info = self.training_env.get_attr("custom_info")[0]
|
||||||
self.logger.record("_state/position", self.locals["infos"][0]["position"])
|
|
||||||
self.logger.record("_state/trade_duration", self.locals["infos"][0]["trade_duration"])
|
for info in local_info:
|
||||||
self.logger.record("_state/current_profit_pct", self.locals["infos"]
|
if info not in ["episode", "terminal_observation"]:
|
||||||
[0]["current_profit_pct"])
|
self.logger.record(f"_info/{info}", local_info[info])
|
||||||
self.logger.record("_reward/total_profit", self.locals["infos"][0]["total_profit"])
|
|
||||||
self.logger.record("_reward/total_reward", self.locals["infos"][0]["total_reward"])
|
for info in custom_info:
|
||||||
self.logger.record_mean("_reward/mean_trade_duration", self.locals["infos"]
|
if info in [action.name for action in self.actions]:
|
||||||
[0]["trade_duration"])
|
self.logger.record(f"_actions/{info}", custom_info[info])
|
||||||
self.logger.record("_actions/action", self.locals["infos"][0]["action"])
|
else:
|
||||||
self.logger.record("_actions/_Invalid", custom_info["Invalid"])
|
self.logger.record(f"_custom/{info}", custom_info[info])
|
||||||
self.logger.record("_actions/_Unknown", custom_info["Unknown"])
|
|
||||||
self.logger.record("_actions/Hold", custom_info["Hold"])
|
|
||||||
for action in self.actions:
|
|
||||||
self.logger.record(f"_actions/{action.name}", custom_info[action.name])
|
|
||||||
return True
|
return True
|
||||||
|
@ -100,7 +100,6 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
|||||||
"""
|
"""
|
||||||
# first, penalize if the action is not valid
|
# first, penalize if the action is not valid
|
||||||
if not self._is_valid(action):
|
if not self._is_valid(action):
|
||||||
self.custom_info["Invalid"] += 1
|
|
||||||
return -2
|
return -2
|
||||||
|
|
||||||
pnl = self.get_unrealized_profit()
|
pnl = self.get_unrealized_profit()
|
||||||
@ -109,15 +108,15 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
|||||||
# reward agent for entering trades
|
# reward agent for entering trades
|
||||||
if (action == Actions.Long_enter.value
|
if (action == Actions.Long_enter.value
|
||||||
and self._position == Positions.Neutral):
|
and self._position == Positions.Neutral):
|
||||||
self.custom_info[f"{Actions.Long_enter.name}"] += 1
|
self.custom_info[Actions.Long_enter.name] += 1
|
||||||
return 25
|
return 25
|
||||||
if (action == Actions.Short_enter.value
|
if (action == Actions.Short_enter.value
|
||||||
and self._position == Positions.Neutral):
|
and self._position == Positions.Neutral):
|
||||||
self.custom_info[f"{Actions.Short_enter.name}"] += 1
|
self.custom_info[Actions.Short_enter.name] += 1
|
||||||
return 25
|
return 25
|
||||||
# discourage agent from not entering trades
|
# discourage agent from not entering trades
|
||||||
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
||||||
self.custom_info[f"{Actions.Neutral.name}"] += 1
|
self.custom_info[Actions.Neutral.name] += 1
|
||||||
return -1
|
return -1
|
||||||
|
|
||||||
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
|
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
|
||||||
@ -131,22 +130,21 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
|||||||
# discourage sitting in position
|
# discourage sitting in position
|
||||||
if (self._position in (Positions.Short, Positions.Long) and
|
if (self._position in (Positions.Short, Positions.Long) and
|
||||||
action == Actions.Neutral.value):
|
action == Actions.Neutral.value):
|
||||||
self.custom_info["Hold"] += 1
|
self.custom_info[Actions.Neutral.name] += 1
|
||||||
return -1 * trade_duration / max_trade_duration
|
return -1 * trade_duration / max_trade_duration
|
||||||
|
|
||||||
# close long
|
# close long
|
||||||
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
||||||
if pnl > self.profit_aim * self.rr:
|
if pnl > self.profit_aim * self.rr:
|
||||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||||
self.custom_info[f"{Actions.Long_exit.name}"] += 1
|
self.custom_info[Actions.Long_exit.name] += 1
|
||||||
return float(pnl * factor)
|
return float(pnl * factor)
|
||||||
|
|
||||||
# close short
|
# close short
|
||||||
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
||||||
if pnl > self.profit_aim * self.rr:
|
if pnl > self.profit_aim * self.rr:
|
||||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||||
self.custom_info[f"{Actions.Short_exit.name}"] += 1
|
self.custom_info[Actions.Short_exit.name] += 1
|
||||||
return float(pnl * factor)
|
return float(pnl * factor)
|
||||||
|
|
||||||
self.custom_info["Unknown"] += 1
|
|
||||||
return 0.
|
return 0.
|
||||||
|
Loading…
Reference in New Issue
Block a user