start convolution neural network plugin
This commit is contained in:
		
							
								
								
									
										145
									
								
								freqtrade/freqai/prediction_models/CNNPredictionModel.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										145
									
								
								freqtrade/freqai/prediction_models/CNNPredictionModel.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,145 @@ | ||||
| import logging | ||||
| from typing import Any, Dict, Tuple | ||||
|  | ||||
| from pandas import DataFrame | ||||
| from freqtrade.exceptions import OperationalException | ||||
| from freqtrade.freqai.data_kitchen import FreqaiDataKitchen | ||||
| import tensorflow as tf | ||||
| from freqtrade.freqai.base_models.BaseTensorFlowModel import BaseTensorFlowModel, WindowGenerator | ||||
| from tensorflow.keras.layers import Input, Conv1D, Dense | ||||
| from tensorflow.keras.models import Model | ||||
| import numpy as np | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
| # tf.config.run_functions_eagerly(True) | ||||
| # tf.data.experimental.enable_debug_mode() | ||||
|  | ||||
| MAX_EPOCHS = 10 | ||||
|  | ||||
|  | ||||
| class CNNPredictionModel(BaseTensorFlowModel): | ||||
|     """ | ||||
|     User created prediction model. The class needs to override three necessary | ||||
|     functions, predict(), fit(). | ||||
|     """ | ||||
|  | ||||
|     def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen) -> Any: | ||||
|         """ | ||||
|         User sets up the training and test data to fit their desired model here | ||||
|         :params: | ||||
|         :data_dictionary: the dictionary constructed by DataHandler to hold | ||||
|         all the training and test data/labels. | ||||
|         """ | ||||
|         train_df = data_dictionary["train_features"] | ||||
|         train_labels = data_dictionary["train_labels"] | ||||
|         test_df = data_dictionary["test_features"] | ||||
|         test_labels = data_dictionary["test_labels"] | ||||
|         n_labels = len(train_labels.columns) | ||||
|  | ||||
|         if n_labels > 1: | ||||
|             raise OperationalException( | ||||
|                 "Neural Net not yet configured for multi-targets. Please " | ||||
|                 " reduce number of targets to 1 in strategy." | ||||
|             ) | ||||
|  | ||||
|         n_features = len(data_dictionary["train_features"].columns) | ||||
|         BATCH_SIZE = self.freqai_info.get("batch_size", 64) | ||||
|         input_dims = [BATCH_SIZE, self.CONV_WIDTH, n_features] | ||||
|  | ||||
|         w1 = WindowGenerator( | ||||
|             input_width=self.CONV_WIDTH, | ||||
|             label_width=1, | ||||
|             shift=1, | ||||
|             train_df=train_df, | ||||
|             val_df=test_df, | ||||
|             train_labels=train_labels, | ||||
|             val_labels=test_labels, | ||||
|             batch_size=BATCH_SIZE, | ||||
|         ) | ||||
|  | ||||
|         model = self.create_model(input_dims, n_labels) | ||||
|  | ||||
|         steps_per_epoch = np.ceil(len(test_df) / BATCH_SIZE) | ||||
|         lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay( | ||||
|             0.001, decay_steps=steps_per_epoch * 1000, decay_rate=1, staircase=False | ||||
|         ) | ||||
|  | ||||
|         early_stopping = tf.keras.callbacks.EarlyStopping( | ||||
|             monitor="loss", patience=3, mode="min", min_delta=0.0001 | ||||
|         ) | ||||
|  | ||||
|         model.compile( | ||||
|             loss=tf.losses.MeanSquaredError(), | ||||
|             optimizer=tf.optimizers.Adam(lr_schedule), | ||||
|             metrics=[tf.metrics.MeanAbsoluteError()], | ||||
|         ) | ||||
|  | ||||
|         model.fit( | ||||
|             w1.train, | ||||
|             epochs=MAX_EPOCHS, | ||||
|             shuffle=False, | ||||
|             validation_data=w1.val, | ||||
|             callbacks=[early_stopping], | ||||
|             verbose=1, | ||||
|         ) | ||||
|  | ||||
|         return model | ||||
|  | ||||
|     def predict( | ||||
|         self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first=True | ||||
|     ) -> Tuple[DataFrame, DataFrame]: | ||||
|         """ | ||||
|         Filter the prediction features data and predict with it. | ||||
|         :param: unfiltered_dataframe: Full dataframe for the current backtest period. | ||||
|         :return: | ||||
|         :predictions: np.array of predictions | ||||
|         :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove | ||||
|         data (NaNs) or felt uncertain about data (PCA and DI index) | ||||
|         """ | ||||
|  | ||||
|         dk.find_features(unfiltered_dataframe) | ||||
|         filtered_dataframe, _ = dk.filter_features( | ||||
|             unfiltered_dataframe, dk.training_features_list, training_filter=False | ||||
|         ) | ||||
|         filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe) | ||||
|         dk.data_dictionary["prediction_features"] = filtered_dataframe | ||||
|  | ||||
|         # optional additional data cleaning/analysis | ||||
|         self.data_cleaning_predict(dk, filtered_dataframe) | ||||
|  | ||||
|         if first: | ||||
|             full_df = dk.data_dictionary["prediction_features"] | ||||
|  | ||||
|             w1 = WindowGenerator( | ||||
|                 input_width=self.CONV_WIDTH, | ||||
|                 label_width=1, | ||||
|                 shift=1, | ||||
|                 test_df=full_df, | ||||
|                 batch_size=len(full_df), | ||||
|             ) | ||||
|  | ||||
|             predictions = self.model.predict(w1.inference) | ||||
|             len_diff = len(dk.do_predict) - len(predictions) | ||||
|             if len_diff > 0: | ||||
|                 dk.do_predict = dk.do_predict[len_diff:] | ||||
|  | ||||
|         else: | ||||
|             data = dk.data_dictionary["prediction_features"] | ||||
|             data = tf.expand_dims(data, axis=0) | ||||
|             predictions = self.model(data, training=False) | ||||
|  | ||||
|         predictions = predictions[:, 0, 0] | ||||
|         pred_df = DataFrame(predictions, columns=dk.label_list) | ||||
|  | ||||
|         pred_df = dk.denormalize_labels_from_metadata(pred_df) | ||||
|  | ||||
|         return (pred_df, np.ones(len(pred_df))) | ||||
|  | ||||
|     def create_model(self, input_dims, n_labels) -> Any: | ||||
|  | ||||
|         input_layer = Input(shape=(input_dims[1], input_dims[2])) | ||||
|         Layer_1 = Conv1D(filters=32, kernel_size=(self.CONV_WIDTH,), activation="relu")(input_layer) | ||||
|         Layer_3 = Dense(units=32, activation="relu")(Layer_1) | ||||
|         output_layer = Dense(units=n_labels)(Layer_3) | ||||
|         return Model(inputs=input_layer, outputs=output_layer) | ||||
		Reference in New Issue
	
	Block a user