Add sharpe ratio as loss function

This commit is contained in:
Matthias
2019-07-15 22:52:33 +02:00
parent e5170582de
commit 55e8092cbf
5 changed files with 73 additions and 13 deletions

View File

@@ -23,7 +23,7 @@ from freqtrade.configuration import Arguments
from freqtrade.data.history import load_data, get_timeframe
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
from freqtrade.optimize.hyperopt_loss import hyperopt_loss_legacy
from freqtrade.optimize.hyperopt_loss import hyperopt_loss_legacy, hyperopt_loss_sharpe
logger = logging.getLogger(__name__)
@@ -74,6 +74,8 @@ class Hyperopt(Backtesting):
# Assign loss function
if self.config.get('loss_function', 'legacy') == 'legacy':
self.calculate_loss = hyperopt_loss_legacy
elif self.config.get('loss_function', 'sharpe') == 'sharpe':
self.calculate_loss = hyperopt_loss_sharpe
elif (self.config['loss_function'] == 'custom' and
hasattr(self.custom_hyperopt, 'hyperopt_loss_custom')):
self.calculate_loss = self.custom_hyperopt.hyperopt_loss_custom # type: ignore

View File

@@ -1,4 +1,7 @@
from datetime import datetime
from math import exp
import numpy as np
from pandas import DataFrame
# Define some constants:
@@ -35,3 +38,27 @@ def hyperopt_loss_legacy(results: DataFrame, trade_count: int,
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
result = trade_loss + profit_loss + duration_loss
return result
def hyperopt_loss_sharpe(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime, *args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results
Using sharpe ratio calculation
"""
total_profit = results.profit_percent
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_yearly_return = total_profit.sum() / days_period
if (np.std(total_profit) != 0.):
sharp_ratio = expected_yearly_return / np.std(total_profit) * np.sqrt(365)
else:
sharp_ratio = 1.
# print(expected_yearly_return, np.std(total_profit), sharp_ratio)
# Negate sharp-ratio so lower is better (??)
return -sharp_ratio