add pytorch regressor example
This commit is contained in:
parent
601c37f862
commit
54db239175
@ -1,6 +1,6 @@
|
|||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, Optional
|
from typing import Any, Dict, Optional, Type
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import torch
|
import torch
|
||||||
@ -20,6 +20,7 @@ class PyTorchModelTrainer:
|
|||||||
criterion: nn.Module,
|
criterion: nn.Module,
|
||||||
device: str,
|
device: str,
|
||||||
init_model: Dict,
|
init_model: Dict,
|
||||||
|
target_tensor_type: torch.dtype,
|
||||||
model_meta_data: Dict[str, Any] = {},
|
model_meta_data: Dict[str, Any] = {},
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
@ -30,6 +31,8 @@ class PyTorchModelTrainer:
|
|||||||
:param device: The device to use for training (e.g. 'cpu', 'cuda').
|
:param device: The device to use for training (e.g. 'cpu', 'cuda').
|
||||||
:param init_model: A dictionary containing the initial model/optimizer
|
:param init_model: A dictionary containing the initial model/optimizer
|
||||||
state_dict and model_meta_data saved by self.save() method.
|
state_dict and model_meta_data saved by self.save() method.
|
||||||
|
:param target_tensor_type: type of target tensor, for classification usually
|
||||||
|
torch.long, for regressor usually torch.float.
|
||||||
:param model_meta_data: Additional metadata about the model (optional).
|
:param model_meta_data: Additional metadata about the model (optional).
|
||||||
:param max_iters: The number of training iterations to run.
|
:param max_iters: The number of training iterations to run.
|
||||||
iteration here refers to the number of times we call
|
iteration here refers to the number of times we call
|
||||||
@ -42,6 +45,7 @@ class PyTorchModelTrainer:
|
|||||||
self.criterion = criterion
|
self.criterion = criterion
|
||||||
self.model_meta_data = model_meta_data
|
self.model_meta_data = model_meta_data
|
||||||
self.device = device
|
self.device = device
|
||||||
|
self.target_tensor_type = target_tensor_type
|
||||||
self.max_iters: int = kwargs.get("max_iters", 100)
|
self.max_iters: int = kwargs.get("max_iters", 100)
|
||||||
self.batch_size: int = kwargs.get("batch_size", 64)
|
self.batch_size: int = kwargs.get("batch_size", 64)
|
||||||
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
|
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
|
||||||
@ -123,8 +127,8 @@ class PyTorchModelTrainer:
|
|||||||
labels_view = labels_shape[0] if labels_shape[1] == 1 else labels_shape
|
labels_view = labels_shape[0] if labels_shape[1] == 1 else labels_shape
|
||||||
dataset = TensorDataset(
|
dataset = TensorDataset(
|
||||||
torch.from_numpy(data_dictionary[f"{split}_features"].values).float(),
|
torch.from_numpy(data_dictionary[f"{split}_features"].values).float(),
|
||||||
torch.from_numpy(data_dictionary[f"{split}_labels"].astype(float).values)
|
torch.from_numpy(data_dictionary[f"{split}_labels"].values)
|
||||||
.long()
|
.to(self.target_tensor_type)
|
||||||
.view(labels_view)
|
.view(labels_view)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -22,16 +22,6 @@ class PyTorchClassifier(BasePyTorchModel):
|
|||||||
User must implement fit method
|
User must implement fit method
|
||||||
"""
|
"""
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
"""
|
|
||||||
int: The number of nodes in the hidden layer of the neural network.
|
|
||||||
int: The maximum number of iterations to run during training.
|
|
||||||
int: The batch size to use during training.
|
|
||||||
float: The learning rate to use during training.
|
|
||||||
int: The number of training iterations between each evaluation.
|
|
||||||
dict: A dictionary mapping class names to their corresponding indices.
|
|
||||||
dict: A dictionary mapping indices to their corresponding class names.
|
|
||||||
"""
|
|
||||||
|
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.class_name_to_index = None
|
self.class_name_to_index = None
|
||||||
self.index_to_class_name = None
|
self.index_to_class_name = None
|
||||||
|
@ -11,7 +11,7 @@ from freqtrade.freqai.prediction_models.PyTorchMLPModel import PyTorchMLPModel
|
|||||||
class PyTorchMLPClassifier(PyTorchClassifier):
|
class PyTorchMLPClassifier(PyTorchClassifier):
|
||||||
"""
|
"""
|
||||||
This class implements the fit method of IFreqaiModel.
|
This class implements the fit method of IFreqaiModel.
|
||||||
int the fit method we initialize the model and trainer objects.
|
in the fit method we initialize the model and trainer objects.
|
||||||
the only requirement from the model is to be aligned to PyTorchClassifier
|
the only requirement from the model is to be aligned to PyTorchClassifier
|
||||||
predict method that expects the model to predict tensor of type long.
|
predict method that expects the model to predict tensor of type long.
|
||||||
the trainer defines the training loop.
|
the trainer defines the training loop.
|
||||||
@ -75,6 +75,7 @@ class PyTorchMLPClassifier(PyTorchClassifier):
|
|||||||
model_meta_data={"class_names": class_names},
|
model_meta_data={"class_names": class_names},
|
||||||
device=self.device,
|
device=self.device,
|
||||||
init_model=init_model,
|
init_model=init_model,
|
||||||
|
target_tensor_type=torch.long,
|
||||||
**self.trainer_kwargs,
|
**self.trainer_kwargs,
|
||||||
)
|
)
|
||||||
trainer.fit(data_dictionary)
|
trainer.fit(data_dictionary)
|
||||||
|
78
freqtrade/freqai/prediction_models/PyTorchMLPRegressor.py
Normal file
78
freqtrade/freqai/prediction_models/PyTorchMLPRegressor.py
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
from typing import Any, Dict
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from freqtrade.freqai.base_models.PyTorchModelTrainer import PyTorchModelTrainer
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from freqtrade.freqai.prediction_models.PyTorchMLPModel import PyTorchMLPModel
|
||||||
|
from freqtrade.freqai.prediction_models.PyTorchRegressor import PyTorchRegressor
|
||||||
|
|
||||||
|
|
||||||
|
class PyTorchMLPRegressor(PyTorchRegressor):
|
||||||
|
"""
|
||||||
|
This class implements the fit method of IFreqaiModel.
|
||||||
|
in the fit method we initialize the model and trainer objects.
|
||||||
|
the only requirement from the model is to be aligned to PyTorchRegressor
|
||||||
|
predict method that expects the model to predict tensor of type float.
|
||||||
|
the trainer defines the training loop.
|
||||||
|
|
||||||
|
parameters are passed via `model_training_parameters` under the freqai
|
||||||
|
section in the config file. e.g:
|
||||||
|
{
|
||||||
|
...
|
||||||
|
"freqai": {
|
||||||
|
...
|
||||||
|
"model_training_parameters" : {
|
||||||
|
"learning_rate": 3e-4,
|
||||||
|
"trainer_kwargs": {
|
||||||
|
"max_iters": 5000,
|
||||||
|
"batch_size": 64,
|
||||||
|
"max_n_eval_batches": None,
|
||||||
|
},
|
||||||
|
"model_kwargs": {
|
||||||
|
"hidden_dim": 512,
|
||||||
|
"dropout_percent": 0.2,
|
||||||
|
"n_layer": 1,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
model_training_params = self.freqai_info.get("model_training_parameters", {})
|
||||||
|
self.learning_rate: float = model_training_params.get("learning_rate", 3e-4)
|
||||||
|
self.model_kwargs: Dict[str, any] = model_training_params.get("model_kwargs", {})
|
||||||
|
self.trainer_kwargs: Dict[str, any] = model_training_params.get("trainer_kwargs", {})
|
||||||
|
|
||||||
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||||
|
"""
|
||||||
|
User sets up the training and test data to fit their desired model here
|
||||||
|
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
n_features = data_dictionary["train_features"].shape[-1]
|
||||||
|
model = PyTorchMLPModel(
|
||||||
|
input_dim=n_features,
|
||||||
|
output_dim=1,
|
||||||
|
**self.model_kwargs
|
||||||
|
)
|
||||||
|
model.to(self.device)
|
||||||
|
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
||||||
|
criterion = torch.nn.MSELoss()
|
||||||
|
init_model = self.get_init_model(dk.pair)
|
||||||
|
trainer = PyTorchModelTrainer(
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
criterion=criterion,
|
||||||
|
device=self.device,
|
||||||
|
init_model=init_model,
|
||||||
|
target_tensor_type=torch.float,
|
||||||
|
**self.trainer_kwargs,
|
||||||
|
)
|
||||||
|
trainer.fit(data_dictionary)
|
||||||
|
return trainer
|
50
freqtrade/freqai/prediction_models/PyTorchRegressor.py
Normal file
50
freqtrade/freqai/prediction_models/PyTorchRegressor.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import numpy.typing as npt
|
||||||
|
import torch
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class PyTorchRegressor(BasePyTorchModel):
|
||||||
|
"""
|
||||||
|
A PyTorch implementation of a regressor.
|
||||||
|
User must implement fit method
|
||||||
|
"""
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||||
|
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||||
|
"""
|
||||||
|
Filter the prediction features data and predict with it.
|
||||||
|
:param unfiltered_df: Full dataframe for the current backtest period.
|
||||||
|
:return:
|
||||||
|
:pred_df: dataframe containing the predictions
|
||||||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
|
"""
|
||||||
|
|
||||||
|
dk.find_features(unfiltered_df)
|
||||||
|
filtered_df, _ = dk.filter_features(
|
||||||
|
unfiltered_df, dk.training_features_list, training_filter=False
|
||||||
|
)
|
||||||
|
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||||
|
dk.data_dictionary["prediction_features"] = filtered_df
|
||||||
|
|
||||||
|
self.data_cleaning_predict(dk)
|
||||||
|
x = torch.from_numpy(dk.data_dictionary["prediction_features"].values)\
|
||||||
|
.float()\
|
||||||
|
.to(self.device)
|
||||||
|
|
||||||
|
y = self.model.model(x)
|
||||||
|
pred_df = DataFrame(y.detach().numpy(), columns=[dk.label_list[0]])
|
||||||
|
return (pred_df, dk.do_predict)
|
Loading…
Reference in New Issue
Block a user