Merge pull request #2997 from freqtrade/new_release

New release 2020.02
This commit is contained in:
Matthias 2020-02-29 19:33:12 +01:00 committed by GitHub
commit 54c07e5e62
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
136 changed files with 4557 additions and 1523 deletions

View File

@ -7,6 +7,8 @@ on:
- develop - develop
- github_actions_tests - github_actions_tests
tags: tags:
release:
types: [published]
pull_request: pull_request:
schedule: schedule:
- cron: '0 5 * * 4' - cron: '0 5 * * 4'
@ -18,7 +20,7 @@ jobs:
strategy: strategy:
matrix: matrix:
os: [ ubuntu-18.04, macos-latest ] os: [ ubuntu-18.04, macos-latest ]
python-version: [3.7] python-version: [3.7, 3.8]
steps: steps:
- uses: actions/checkout@v1 - uses: actions/checkout@v1
@ -68,7 +70,7 @@ jobs:
pytest --random-order --cov=freqtrade --cov-config=.coveragerc pytest --random-order --cov=freqtrade --cov-config=.coveragerc
- name: Coveralls - name: Coveralls
if: startsWith(matrix.os, 'ubuntu') if: (startsWith(matrix.os, 'ubuntu') && matrix.python-version == '3.8')
env: env:
# Coveralls token. Not used as secret due to github not providing secrets to forked repositories # Coveralls token. Not used as secret due to github not providing secrets to forked repositories
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
@ -191,15 +193,40 @@ jobs:
deploy: deploy:
needs: [ build, build_windows, docs_check ] needs: [ build, build_windows, docs_check ]
runs-on: ubuntu-18.04 runs-on: ubuntu-18.04
if: (github.event_name == 'push' || github.event_name == 'schedule') && github.repository == 'freqtrade/freqtrade' if: (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'release') && github.repository == 'freqtrade/freqtrade'
steps: steps:
- uses: actions/checkout@v1 - uses: actions/checkout@v1
- name: Set up Python
uses: actions/setup-python@v1
with:
python-version: 3.8
- name: Extract branch name - name: Extract branch name
shell: bash shell: bash
run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})" run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})"
id: extract_branch id: extract_branch
- name: Build distribution
run: |
pip install -U setuptools wheel
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@master
if: (steps.extract_branch.outputs.branch == 'master' || github.event_name == 'release')
with:
user: __token__
password: ${{ secrets.pypi_test_password }}
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@master
if: (steps.extract_branch.outputs.branch == 'master' || github.event_name == 'release')
with:
user: __token__
password: ${{ secrets.pypi_password }}
- name: Build and test and push docker image - name: Build and test and push docker image
env: env:
IMAGE_NAME: freqtradeorg/freqtrade IMAGE_NAME: freqtradeorg/freqtrade

View File

@ -48,7 +48,7 @@ pytest tests/test_<file_name>.py::test_<method_name>
#### Run Flake8 #### Run Flake8
```bash ```bash
flake8 freqtrade flake8 freqtrade tests scripts
``` ```
We receive a lot of code that fails the `flake8` checks. We receive a lot of code that fails the `flake8` checks.
@ -109,11 +109,11 @@ Exceptions:
Contributors may be given commit privileges. Preference will be given to those with: Contributors may be given commit privileges. Preference will be given to those with:
1. Past contributions to FreqTrade and other related open-source projects. Contributions to FreqTrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Quantity and quality are considered. 1. Past contributions to Freqtrade and other related open-source projects. Contributions to Freqtrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Quantity and quality are considered.
1. A coding style that the other core committers find simple, minimal, and clean. 1. A coding style that the other core committers find simple, minimal, and clean.
1. Access to resources for cross-platform development and testing. 1. Access to resources for cross-platform development and testing.
1. Time to devote to the project regularly. 1. Time to devote to the project regularly.
Being a Committer does not grant write permission on `develop` or `master` for security reasons (Users trust FreqTrade with their Exchange API keys). Being a Committer does not grant write permission on `develop` or `master` for security reasons (Users trust Freqtrade with their Exchange API keys).
After being Committer for some time, a Committer may be named Core Committer and given full repository access. After being Committer for some time, a Committer may be named Core Committer and given full repository access.

View File

@ -1,4 +1,4 @@
FROM python:3.7.6-slim-stretch FROM python:3.8.1-slim-buster
RUN apt-get update \ RUN apt-get update \
&& apt-get -y install curl build-essential libssl-dev \ && apt-get -y install curl build-essential libssl-dev \

View File

@ -1,6 +1,6 @@
# Freqtrade # Freqtrade
[![Build Status](https://travis-ci.org/freqtrade/freqtrade.svg?branch=develop)](https://travis-ci.org/freqtrade/freqtrade) [![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop) [![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Documentation](https://readthedocs.org/projects/freqtrade/badge/)](https://www.freqtrade.io) [![Documentation](https://readthedocs.org/projects/freqtrade/badge/)](https://www.freqtrade.io)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability) [![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)

View File

@ -1,11 +1,11 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import sys import sys
import warnings import logging
from freqtrade.main import main logger = logging.getLogger(__name__)
warnings.warn(
"Deprecated - To continue to run the bot like this, please run `pip install -e .` again.", logger.error("DEPRECATED installation detected, please run `pip install -e .` again.")
DeprecationWarning)
main(sys.argv[1:]) sys.exit(2)

View File

@ -23,7 +23,7 @@ if [ $? -ne 0 ]; then
fi fi
# Run backtest # Run backtest
docker run --rm -v $(pwd)/config.json.example:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy DefaultStrategy docker run --rm -v $(pwd)/config.json.example:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy DefaultStrategy
if [ $? -ne 0 ]; then if [ $? -ne 0 ]; then
echo "failed running backtest" echo "failed running backtest"

View File

@ -4,7 +4,7 @@
"stake_amount": 0.05, "stake_amount": 0.05,
"tradable_balance_ratio": 0.99, "tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD", "fiat_display_currency": "USD",
"ticker_interval" : "5m", "ticker_interval": "5m",
"dry_run": false, "dry_run": false,
"trailing_stop": false, "trailing_stop": false,
"unfilledtimeout": { "unfilledtimeout": {
@ -44,7 +44,7 @@
"DASH/BTC", "DASH/BTC",
"ZEC/BTC", "ZEC/BTC",
"XLM/BTC", "XLM/BTC",
"NXT/BTC", "XRP/BTC",
"TRX/BTC", "TRX/BTC",
"ADA/BTC", "ADA/BTC",
"XMR/BTC" "XMR/BTC"

View File

@ -4,7 +4,7 @@
"stake_amount": 0.05, "stake_amount": 0.05,
"tradable_balance_ratio": 0.99, "tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD", "fiat_display_currency": "USD",
"ticker_interval" : "5m", "ticker_interval": "5m",
"dry_run": true, "dry_run": true,
"trailing_stop": false, "trailing_stop": false,
"unfilledtimeout": { "unfilledtimeout": {

View File

@ -4,7 +4,7 @@
"stake_amount": 0.05, "stake_amount": 0.05,
"tradable_balance_ratio": 0.99, "tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD", "fiat_display_currency": "USD",
"amount_reserve_percent" : 0.05, "amount_reserve_percent": 0.05,
"amend_last_stake_amount": false, "amend_last_stake_amount": false,
"last_stake_amount_min_ratio": 0.5, "last_stake_amount_min_ratio": 0.5,
"dry_run": false, "dry_run": false,
@ -62,8 +62,8 @@
"refresh_period": 1800 "refresh_period": 1800
}, },
{"method": "PrecisionFilter"}, {"method": "PrecisionFilter"},
{"method": "PriceFilter", "low_price_ratio": 0.01 {"method": "PriceFilter", "low_price_ratio": 0.01},
} {"method": "SpreadFilter", "max_spread_ratio": 0.005}
], ],
"exchange": { "exchange": {
"name": "bittrex", "name": "bittrex",
@ -129,5 +129,7 @@
"heartbeat_interval": 60 "heartbeat_interval": 60
}, },
"strategy": "DefaultStrategy", "strategy": "DefaultStrategy",
"strategy_path": "user_data/strategies/" "strategy_path": "user_data/strategies/",
"dataformat_ohlcv": "json",
"dataformat_trades": "jsongz"
} }

View File

@ -4,7 +4,7 @@
"stake_amount": 10, "stake_amount": 10,
"tradable_balance_ratio": 0.99, "tradable_balance_ratio": 0.99,
"fiat_display_currency": "EUR", "fiat_display_currency": "EUR",
"ticker_interval" : "5m", "ticker_interval": "5m",
"dry_run": true, "dry_run": true,
"trailing_stop": false, "trailing_stop": false,
"unfilledtimeout": { "unfilledtimeout": {

View File

@ -3,6 +3,18 @@ version: '3'
services: services:
freqtrade: freqtrade:
image: freqtradeorg/freqtrade:master image: freqtradeorg/freqtrade:master
# Build step - only needed when additional dependencies are needed
# build:
# context: .
# dockerfile: "./Dockerfile.technical"
restart: unless-stopped
container_name: freqtrade
volumes: volumes:
- "./user_data:/freqtrade/user_data" - "./user_data:/freqtrade/user_data"
- "./config.json:/freqtrade/config.json" # Default command used when running `docker compose up`
command: >
trade
--logfile /freqtrade/user_data/freqtrade.log
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
--config /freqtrade/user_data/config.json
--strategy SampleStrategy

View File

@ -4,6 +4,34 @@ This page explains some advanced Hyperopt topics that may require higher
coding skills and Python knowledge than creation of an ordinal hyperoptimization coding skills and Python knowledge than creation of an ordinal hyperoptimization
class. class.
## Derived hyperopt classes
Custom hyperop classes can be derived in the same way [it can be done for strategies](strategy-customization.md#derived-strategies).
Applying to hyperoptimization, as an example, you may override how dimensions are defined in your optimization hyperspace:
```python
class MyAwesomeHyperOpt(IHyperOpt):
...
# Uses default stoploss dimension
class MyAwesomeHyperOpt2(MyAwesomeHyperOpt):
@staticmethod
def stoploss_space() -> List[Dimension]:
# Override boundaries for stoploss
return [
Real(-0.33, -0.01, name='stoploss'),
]
```
and then quickly switch between hyperopt classes, running optimization process with hyperopt class you need in each particular case:
```
$ freqtrade hyperopt --hyperopt MyAwesomeHyperOpt ...
or
$ freqtrade hyperopt --hyperopt MyAwesomeHyperOpt2 ...
```
## Creating and using a custom loss function ## Creating and using a custom loss function
To use a custom loss function class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class. To use a custom loss function class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class.

View File

@ -119,40 +119,40 @@ A backtesting result will look like that:
``` ```
========================================================= BACKTESTING REPORT ======================================================== ========================================================= BACKTESTING REPORT ========================================================
| pair | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss | | Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:---------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:| |:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 | 21 | | ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 | 0 | 21 |
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 | 8 | | ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 | 0 | 8 |
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 | 14 | | BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 | 0 | 14 |
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 | 7 | | DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 | 0 | 7 |
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 | 10 | | ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 | 0 | 10 |
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 | 20 | | EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 | 0 | 20 |
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 | 15 | | ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 | 0 | 15 |
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 | 17 | | ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 | 0 | 17 |
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 | 18 | | IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 | 0 | 18 |
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 | 9 | | LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 | 0 | 9 |
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 | 21 | | LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 | 0 | 21 |
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 | 7 | | NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 | 0 | 7 |
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 | 13 | | NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 | 0 | 13 |
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 | 5 | | REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 | 0 | 5 |
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 | 9 | | XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 | 0 | 9 |
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 | 11 | | XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 | 0 | 11 |
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 | 23 | | XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 | 0 | 23 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 15 | | ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 0 | 15 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 | | TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
========================================================= SELL REASON STATS ========================================================= ========================================================= SELL REASON STATS =========================================================
| Sell Reason | Count | Profit | Loss | | Sell Reason | Sells | Wins | Draws | Losses |
|:-------------------|--------:|---------:|-------:| |:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 55 | | trailing_stop_loss | 205 | 150 | 0 | 55 |
| stop_loss | 166 | 0 | 166 | | stop_loss | 166 | 0 | 0 | 166 |
| sell_signal | 56 | 36 | 20 | | sell_signal | 56 | 36 | 0 | 20 |
| force_sell | 2 | 0 | 2 | | force_sell | 2 | 0 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ====================================================== ====================================================== LEFT OPEN TRADES REPORT ======================================================
| pair | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss | | Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:---------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:| |:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 | 0 | | ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 | 0 | 0 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 | 0 | | LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 | 0 | 0 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 | 0 | | TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 | 0 | 0 |
``` ```
The 1st table contains all trades the bot made, including "left open trades". The 1st table contains all trades the bot made, including "left open trades".
@ -237,11 +237,11 @@ There will be an additional table comparing win/losses of the different strategi
Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy. Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy.
``` ```
=========================================================== Strategy Summary =========================================================== =========================================================== STRATEGY SUMMARY ===========================================================
| Strategy | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss | | Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:------------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:| |:------------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|-------:|
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 | | Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 825 | | Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 |
``` ```
## Next step ## Next step

View File

@ -58,9 +58,10 @@ Common arguments:
details. details.
-V, --version show program's version number and exit -V, --version show program's version number and exit
-c PATH, --config PATH -c PATH, --config PATH
Specify configuration file (default: `config.json`). Specify configuration file (default:
Multiple --config options may be used. Can be set to `userdir/config.json` or `config.json` whichever
`-` to read config from stdin. exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH -d PATH, --datadir PATH
Path to directory with historical backtesting data. Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH --userdir PATH, --user-data-dir PATH
@ -71,6 +72,7 @@ Strategy arguments:
Specify strategy class name which will be used by the Specify strategy class name which will be used by the
bot. bot.
--strategy-path PATH Specify additional strategy lookup path. --strategy-path PATH Specify additional strategy lookup path.
.
``` ```
@ -242,12 +244,15 @@ optional arguments:
Common arguments: Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages). -v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. --logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit -V, --version show program's version number and exit
-c PATH, --config PATH -c PATH, --config PATH
Specify configuration file (default: `config.json`). Specify configuration file (default:
Multiple --config options may be used. Can be set to `userdir/config.json` or `config.json` whichever
`-` to read config from stdin. exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH -d PATH, --datadir PATH
Path to directory with historical backtesting data. Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH --userdir PATH, --user-data-dir PATH
@ -280,7 +285,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--stake-amount STAKE_AMOUNT] [--fee FLOAT] [--stake-amount STAKE_AMOUNT] [--fee FLOAT]
[--hyperopt NAME] [--hyperopt-path PATH] [--eps] [--hyperopt NAME] [--hyperopt-path PATH] [--eps]
[-e INT] [-e INT]
[--spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]] [--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]]
[--dmmp] [--print-all] [--no-color] [--print-json] [--dmmp] [--print-all] [--no-color] [--print-json]
[-j JOBS] [--random-state INT] [--min-trades INT] [-j JOBS] [--random-state INT] [--min-trades INT]
[--continue] [--hyperopt-loss NAME] [--continue] [--hyperopt-loss NAME]
@ -308,9 +313,9 @@ optional arguments:
Allow buying the same pair multiple times (position Allow buying the same pair multiple times (position
stacking). stacking).
-e INT, --epochs INT Specify number of epochs (default: 100). -e INT, --epochs INT Specify number of epochs (default: 100).
--spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...] --spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]
Specify which parameters to hyperopt. Space-separated Specify which parameters to hyperopt. Space-separated
list. Default: `all`. list.
--dmmp, --disable-max-market-positions --dmmp, --disable-max-market-positions
Disable applying `max_open_trades` during backtest Disable applying `max_open_trades` during backtest
(same as setting `max_open_trades` to a very high (same as setting `max_open_trades` to a very high
@ -337,17 +342,21 @@ optional arguments:
generate completely different results, since the generate completely different results, since the
target for optimization is different. Built-in target for optimization is different. Built-in
Hyperopt-loss-functions are: DefaultHyperOptLoss, Hyperopt-loss-functions are: DefaultHyperOptLoss,
OnlyProfitHyperOptLoss, SharpeHyperOptLoss (default: OnlyProfitHyperOptLoss, SharpeHyperOptLoss,
SharpeHyperOptLossDaily.(default:
`DefaultHyperOptLoss`). `DefaultHyperOptLoss`).
Common arguments: Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages). -v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. --logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit -V, --version show program's version number and exit
-c PATH, --config PATH -c PATH, --config PATH
Specify configuration file (default: `config.json`). Specify configuration file (default:
Multiple --config options may be used. Can be set to `userdir/config.json` or `config.json` whichever
`-` to read config from stdin. exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH -d PATH, --datadir PATH
Path to directory with historical backtesting data. Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH --userdir PATH, --user-data-dir PATH
@ -358,6 +367,7 @@ Strategy arguments:
Specify strategy class name which will be used by the Specify strategy class name which will be used by the
bot. bot.
--strategy-path PATH Specify additional strategy lookup path. --strategy-path PATH Specify additional strategy lookup path.
``` ```
## Edge commands ## Edge commands
@ -394,12 +404,15 @@ optional arguments:
Common arguments: Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages). -v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. --logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit -V, --version show program's version number and exit
-c PATH, --config PATH -c PATH, --config PATH
Specify configuration file (default: `config.json`). Specify configuration file (default:
Multiple --config options may be used. Can be set to `userdir/config.json` or `config.json` whichever
`-` to read config from stdin. exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH -d PATH, --datadir PATH
Path to directory with historical backtesting data. Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH --userdir PATH, --user-data-dir PATH
@ -410,6 +423,7 @@ Strategy arguments:
Specify strategy class name which will be used by the Specify strategy class name which will be used by the
bot. bot.
--strategy-path PATH Specify additional strategy lookup path. --strategy-path PATH Specify additional strategy lookup path.
``` ```
To understand edge and how to read the results, please read the [edge documentation](edge.md). To understand edge and how to read the results, please read the [edge documentation](edge.md).

View File

@ -40,75 +40,79 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| Parameter | Description | | Parameter | Description |
|------------|-------------| |------------|-------------|
| `max_open_trades` | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades). [More information below](#configuring-amount-per-trade).<br> ***Datatype:*** *Positive integer or -1.* | `max_open_trades` | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
| `stake_currency` | **Required.** Crypto-currency used for trading. [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *String* | `stake_currency` | **Required.** Crypto-currency used for trading. [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Positive float or `"unlimited"`.* | `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Positive float or `"unlimited"`.
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> ***Datatype:*** *Positive float between `0.1` and `1.0`.* | `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> ***Datatype:*** *Float (as ratio)* | `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> ***Datatype:*** *Positive Float as ratio.* | `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
| `ticker_interval` | The ticker interval to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *String* | `ticker_interval` | The ticker interval to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> ***Datatype:*** *String* | `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> **Datatype:** String
| `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean* | `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in the Dry Run mode.<br>*Defaults to `1000`.* <br> ***Datatype:*** *Float* | `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in the Dry Run mode.<br>*Defaults to `1000`.* <br> **Datatype:** Float
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `minimal_roi` | **Required.** Set the threshold in percent the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Dict* | `minimal_roi` | **Required.** Set the threshold in percent the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `stoploss` | **Required.** Value of the stoploss in percent used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Float (as ratio)* | `stoploss` | **Required.** Value of the stoploss in percent used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float (as ratio)
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Boolean* | `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Boolean
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Float* | `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> ***Datatype:*** *Float* | `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> ***Datatype:*** *Integer* | `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> ***Datatype:*** *Integer* | `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook). | `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook).
| `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> ***Datatype:*** *Boolean* | `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book Bids to buy. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in [Order Book Bids](#buy-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer* | `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book Bids to buy. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in [Order Book Bids](#buy-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> ***Datatype:*** *Float (as ratio)* | `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `ask_strategy.use_order_book` | Enable selling of open trades using [Order Book Asks](#sell-price-with-orderbook-enabled). <br> ***Datatype:*** *Boolean* | `ask_strategy.use_order_book` | Enable selling of open trades using [Order Book Asks](#sell-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `ask_strategy.order_book_min` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer* | `ask_strategy.order_book_min` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `ask_strategy.order_book_max` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer* | `ask_strategy.order_book_max` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `ask_strategy.use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean* | `ask_strategy.use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `ask_strategy.sell_profit_only` | Wait until the bot makes a positive profit before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `ask_strategy.sell_profit_only` | Wait until the bot makes a positive profit before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `ask_strategy.ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `ask_strategy.ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> ***Datatype:*** *Dict* | `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
| `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Dict* | `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> ***Datatype:*** *String* | `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> ***Datatype:*** *Boolean* | `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String* | `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String* | `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String* | `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#dynamic-pairlists)). <br> ***Datatype:*** *List* | `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#dynamic-pairlists)). <br> **Datatype:** List
| `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#dynamic-pairlists)). <br> ***Datatype:*** *List* | `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#dynamic-pairlists)). <br> **Datatype:** List
| `exchange.ccxt_config` | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> ***Datatype:*** *Dict* | `exchange.ccxt_config` | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> ***Datatype:*** *Dict* | `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> ***Datatype:*** *Positive Integer* | `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation. | `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation.
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean* | `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `pairlists` | Define one or more pairlists to be used. [More information below](#dynamic-pairlists). <br>*Defaults to `StaticPairList`.* <br> ***Datatype:*** *List of Dicts* | `pairlists` | Define one or more pairlists to be used. [More information below](#dynamic-pairlists). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
| `telegram.enabled` | Enable the usage of Telegram. <br> ***Datatype:*** *Boolean* | `telegram.enabled` | Enable the usage of Telegram. <br> **Datatype:** Boolean
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String* | `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String* | `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `webhook.enabled` | Enable usage of Webhook notifications <br> ***Datatype:*** *Boolean* | `webhook.enabled` | Enable usage of Webhook notifications <br> **Datatype:** Boolean
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String* | `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookbuy` | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String* | `webhook.webhookbuy` | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhooksell` | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String* | `webhook.webhookbuycancel` | Payload to send on buy order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String* | `webhook.webhooksell` | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> ***Datatype:*** *Boolean* | `webhook.webhooksellcancel` | Payload to send on sell order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> ***Datatype:*** *IPv4* | `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br>***Datatype:*** *Integer between 1024 and 65535* | `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> ***Datatype:*** *String* | `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
| `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> ***Datatype:*** *String* | `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br>**Datatype:** Integer between 1024 and 65535
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> ***Datatype:*** *String, SQLAlchemy connect string* | `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `initial_state` | Defines the initial application state. More information below. <br>*Defaults to `stopped`.* <br> ***Datatype:*** *Enum, either `stopped` or `running`* | `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> ***Datatype:*** *Boolean* | `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> ***Datatype:*** *ClassName* | `initial_state` | Defines the initial application state. More information below. <br>*Defaults to `stopped`.* <br> **Datatype:** Enum, either `stopped` or `running`
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> ***Datatype:*** *String* | `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> **Datatype:** Boolean
| `internals.process_throttle_secs` | Set the process throttle. Value in second. <br>*Defaults to `5` seconds.* <br> ***Datatype:*** *Positive Integer* | `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> ***Datatype:*** *Positive Integer or 0* | `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> ***Datatype:*** *Boolean* | `internals.process_throttle_secs` | Set the process throttle. Value in second. <br>*Defaults to `5` seconds.* <br> **Datatype:** Positive Intege
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> ***Datatype:*** *String* | `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> **Datatype:** Positive Integer or 0
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> ***Datatype:*** *String* | `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> **Datatype:** String
| `dataformat_ohlcv` | Data format to use to store OHLCV historic data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store trades historic data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
### Parameters in the strategy ### Parameters in the strategy
@ -278,7 +282,7 @@ If this is configured, the following 4 values (`buy`, `sell`, `stoploss` and
The below is the default which is used if this is not configured in either strategy or configuration file. The below is the default which is used if this is not configured in either strategy or configuration file.
Since `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price. Since `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
`stoploss` defines the stop-price - and limit should be slightly below this. This defaults to 0.99 / 1%. `stoploss` defines the stop-price - and limit should be slightly below this. This defaults to 0.99 / 1% (configurable via `stoploss_on_exchange_limit_ratio`).
Calculation example: we bought the asset at 100$. Calculation example: we bought the asset at 100$.
Stop-price is 95$, then limit would be `95 * 0.99 = 94.05$` - so the stoploss will happen between 95$ and 94.05$. Stop-price is 95$, then limit would be `95 * 0.99 = 94.05$` - so the stoploss will happen between 95$ and 94.05$.
@ -503,6 +507,7 @@ Inactive markets and blacklisted pairs are always removed from the resulting `pa
* [`VolumePairList`](#volume-pair-list) * [`VolumePairList`](#volume-pair-list)
* [`PrecisionFilter`](#precision-filter) * [`PrecisionFilter`](#precision-filter)
* [`PriceFilter`](#price-pair-filter) * [`PriceFilter`](#price-pair-filter)
* [`SpreadFilter`](#spread-filter)
!!! Tip "Testing pairlists" !!! Tip "Testing pairlists"
Pairlist configurations can be quite tricky to get right. Best use the [`test-pairlist`](utils.md#test-pairlist) subcommand to test your configuration quickly. Pairlist configurations can be quite tricky to get right. Best use the [`test-pairlist`](utils.md#test-pairlist) subcommand to test your configuration quickly.
@ -551,6 +556,11 @@ Min price precision is 8 decimals. If price is 0.00000011 - one step would be 0.
These pairs are dangerous since it may be impossible to place the desired stoploss - and often result in high losses. These pairs are dangerous since it may be impossible to place the desired stoploss - and often result in high losses.
#### Spread Filter
Removes pairs that have a difference between asks and bids above the specified ratio (default `0.005`).
Example:
If `DOGE/BTC` maximum bid is 0.00000026 and minimum ask is 0.00000027 the ratio is calculated as: `1 - bid/ask ~= 0.037` which is `> 0.005`
### Full Pairlist example ### Full Pairlist example
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting by `quoteVolume` and applies both [`PrecisionFilter`](#precision-filter) and [`PriceFilter`](#price-pair-filter), filtering all assets where 1 priceunit is > 1%. The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting by `quoteVolume` and applies both [`PrecisionFilter`](#precision-filter) and [`PriceFilter`](#price-pair-filter), filtering all assets where 1 priceunit is > 1%.
@ -602,12 +612,25 @@ Once you will be happy with your bot performance running in the Dry-run mode, yo
!!! Note !!! Note
A simulated wallet is available during dry-run mode, and will assume a starting capital of `dry_run_wallet` (defaults to 1000). A simulated wallet is available during dry-run mode, and will assume a starting capital of `dry_run_wallet` (defaults to 1000).
### Considerations for dry-run
* API-keys may or may not be provided. Only Read-Only operations (i.e. operations that do not alter account state) on the exchange are performed in the dry-run mode.
* Wallets (`/balance`) are simulated.
* Orders are simulated, and will not be posted to the exchange.
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* Open orders (not trades, which are stored in the database) are reset on bot restart.
## Switch to production mode ## Switch to production mode
In production mode, the bot will engage your money. Be careful, since a wrong In production mode, the bot will engage your money. Be careful, since a wrong
strategy can lose all your money. Be aware of what you are doing when strategy can lose all your money. Be aware of what you are doing when
you run it in production mode. you run it in production mode.
### Setup your exchange account
You will need to create API Keys (usually you get `key` and `secret`, some exchanges require an additional `password`) from the Exchange website and you'll need to insert this into the appropriate fields in the configuration or when asked by the `freqtrade new-config` command.
API Keys are usually only required for live trading (trading for real money, bot running in "production mode", executing real orders on the exchange) and are not required for the bot running in dry-run (trade simulation) mode. When you setup the bot in dry-run mode, you may fill these fields with empty values.
### To switch your bot in production mode ### To switch your bot in production mode
**Edit your `config.json` file.** **Edit your `config.json` file.**
@ -629,9 +652,6 @@ you run it in production mode.
} }
``` ```
!!! Note
If you have an exchange API key yet, [see our tutorial](installation.md#setup-your-exchange-account).
You should also make sure to read the [Exchanges](exchanges.md) section of the documentation to be aware of potential configuration details specific to your exchange. You should also make sure to read the [Exchanges](exchanges.md) section of the documentation to be aware of potential configuration details specific to your exchange.
### Using proxy with Freqtrade ### Using proxy with Freqtrade
@ -656,7 +676,7 @@ freqtrade
## Embedding Strategies ## Embedding Strategies
FreqTrade provides you with with an easy way to embed the strategy into your configuration file. Freqtrade provides you with with an easy way to embed the strategy into your configuration file.
This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field, This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field,
in your chosen config file. in your chosen config file.

View File

@ -12,6 +12,152 @@ Otherwise `--exchange` becomes mandatory.
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, use `--days xx` with a number slightly higher than the missing number of days. Freqtrade will keep the available data and only download the missing data. If you already have backtesting data available in your data-directory and would like to refresh this data up to today, use `--days xx` with a number slightly higher than the missing number of days. Freqtrade will keep the available data and only download the missing data.
Be carefull though: If the number is too small (which would result in a few missing days), the whole dataset will be removed and only xx days will be downloaded. Be carefull though: If the number is too small (which would result in a few missing days), the whole dataset will be removed and only xx days will be downloaded.
### Usage
```
usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [-p PAIRS [PAIRS ...]]
[--pairs-file FILE] [--days INT] [--dl-trades] [--exchange EXCHANGE]
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]]
[--erase] [--data-format-ohlcv {json,jsongz}] [--data-format-trades {json,jsongz}]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-separated.
--pairs-file FILE File containing a list of pairs to download.
--days INT Download data for given number of days.
--dl-trades Download trades instead of OHLCV data. The bot will resample trades to the desired timeframe as specified as
--timeframes/-t.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no config is provided.
-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...], --timeframes {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]
Specify which tickers to download. Space-separated list. Default: `1m 5m`.
--erase Clean all existing data for the selected exchange/pairs/timeframes.
--data-format-ohlcv {json,jsongz}
Storage format for downloaded ohlcv data. (default: `json`).
--data-format-trades {json,jsongz}
Storage format for downloaded trades data. (default: `jsongz`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
### Data format
Freqtrade currently supports 2 dataformats, `json` (plain "text" json files) and `jsongz` (a gzipped version of json files).
By default, OHLCV data is stored as `json` data, while trades data is stored as `jsongz` data.
This can be changed via the `--data-format-ohlcv` and `--data-format-trades` parameters respectivly.
If the default dataformat has been changed during download, then the keys `dataformat_ohlcv` and `dataformat_trades` in the configuration file need to be adjusted to the selected dataformat as well.
!!! Note
You can convert between data-formats using the [convert-data](#subcommand-convert-data) and [convert-trade-data](#subcommand-convert-trade-data) methods.
#### Subcommand convert data
```
usage: freqtrade convert-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[-p PAIRS [PAIRS ...]] --format-from
{json,jsongz} --format-to {json,jsongz}
[--erase]
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-
separated.
--format-from {json,jsongz}
Source format for data conversion.
--format-to {json,jsongz}
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...], --timeframes {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]
Specify which tickers to download. Space-separated
list. Default: `1m 5m`.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
##### Example converting data
The following command will convert all ohlcv (candle) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
It'll also remove original json data files (`--erase` parameter).
``` bash
freqtrade convert-data --format-from json --format-to jsongz --data-dir ~/.freqtrade/data/binance -t 5m 15m --erase
```
#### Subcommand convert-trade data
```
usage: freqtrade convert-trade-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[-p PAIRS [PAIRS ...]] --format-from
{json,jsongz} --format-to {json,jsongz}
[--erase]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-
separated.
--format-from {json,jsongz}
Source format for data conversion.
--format-to {json,jsongz}
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
##### Example converting trades
The following command will convert all available trade-data in `~/.freqtrade/data/kraken` from jsongz to json.
It'll also remove original jsongz data files (`--erase` parameter).
``` bash
freqtrade convert-trade-data --format-from jsongz --format-to json --data-dir ~/.freqtrade/data/kraken --erase
```
### Pairs file ### Pairs file
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used. In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.

View File

@ -1,6 +1,6 @@
# Development Help # Development Help
This page is intended for developers of FreqTrade, people who want to contribute to the FreqTrade codebase or documentation, or people who want to understand the source code of the application they're running. This page is intended for developers of Freqtrade, people who want to contribute to the Freqtrade codebase or documentation, or people who want to understand the source code of the application they're running.
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/freqtrade/issues) on [GitHub](https://github.com) and also have a dev channel in [slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) where you can ask questions. All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/freqtrade/issues) on [GitHub](https://github.com) and also have a dev channel in [slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) where you can ask questions.
@ -153,7 +153,7 @@ In VolumePairList, this implements different methods of sorting, does early vali
## Implement a new Exchange (WIP) ## Implement a new Exchange (WIP)
!!! Note !!! Note
This section is a Work in Progress and is not a complete guide on how to test a new exchange with FreqTrade. This section is a Work in Progress and is not a complete guide on how to test a new exchange with Freqtrade.
Most exchanges supported by CCXT should work out of the box. Most exchanges supported by CCXT should work out of the box.

View File

@ -1,4 +1,4 @@
# Using FreqTrade with Docker # Using Freqtrade with Docker
## Install Docker ## Install Docker
@ -8,13 +8,141 @@ Start by downloading and installing Docker CE for your platform:
* [Windows](https://docs.docker.com/docker-for-windows/install/) * [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/) * [Linux](https://docs.docker.com/install/)
Optionally, [docker-compose](https://docs.docker.com/compose/install/) should be installed and available to follow the [docker quick start guide](#docker-quick-start).
Once you have Docker installed, simply prepare the config file (e.g. `config.json`) and run the image for `freqtrade` as explained below. Once you have Docker installed, simply prepare the config file (e.g. `config.json`) and run the image for `freqtrade` as explained below.
## Download the official FreqTrade docker image ## Freqtrade with docker-compose
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/develop/docker-compose.yml) ready for usage.
!!! Note
The following section assumes that docker and docker-compose is installed and available to the logged in user.
!!! Note
All below comands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
### Docker quick start
Create a new directory and place the [docker-compose file](https://github.com/freqtrade/freqtrade/blob/develop/docker-compose.yml) in this directory.
``` bash
mkdir ft_userdata
cd ft_userdata/
# Download the docker-compose file from the repository
curl https://raw.githubusercontent.com/freqtrade/freqtrade/develop/docker-compose.yml -o docker-compose.yml
# Pull the freqtrade image
docker-compose pull
# Create user directory structure
docker-compose run --rm freqtrade create-userdir --userdir user_data
# Create configuration - Requires answering interactive questions
docker-compose run --rm freqtrade new-config --config user_data/config.json
```
The above snippet creates a new directory called "ft_userdata", downloads the latest compose file and pulls the freqtrade image.
The last 2 steps in the snippet create the directory with user-data, as well as (interactively) the default configuration based on your selections.
!!! Note
You can edit the configuration at any time, which is available as `user_data/config.json` (within the directory `ft_userdata`) when using the above configuration.
#### Adding your strategy
The configuration is now available as `user_data/config.json`.
You should now copy your strategy to `user_data/strategies/` - and add the Strategy class name to the `docker-compose.yml` file, replacing `SampleStrategy`. If you wish to run the bot with the SampleStrategy, just leave it as it is.
!!! Warning
The `SampleStrategy` is there for your reference and give you ideas for your own strategy.
Please always backtest the strategy and use dry-run for some time before risking real money!
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
``` bash
docker-compose up -d
```
#### Docker-compose logs
Logs will be written to `user_data/freqtrade.log`.
Alternatively, you can check the latest logs using `docker-compose logs -f`.
#### Database
The database will be in the user_data directory as well, and will be called `user_data/tradesv3.sqlite`.
#### Updating freqtrade with docker-compose
To update freqtrade when using docker-compose is as simple as running the following 2 commands:
``` bash
# Download the latest image
docker-compose pull
# Restart the image
docker-compose up -d
```
This will first pull the latest image, and will then restart the container with the just pulled version.
!!! Note
You should always check the changelog for breaking changes / manual interventions required and make sure the bot starts correctly after the update.
#### Going from here
Advanced users may edit the docker-compose file further to include all possible options or arguments.
All possible freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command> <optional arguments>`.
!!! Note "`docker-compose run --rm`"
Including `--rm` will clean up the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
##### Example: Download data with docker-compose
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
``` bash
docker-compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
```
Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data.
##### Example: Backtest with docker-compose
Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe:
``` bash
docker-compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
```
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
#### Additional dependencies with docker-compose
If your strategy requires dependencies not included in the default image (like [technical](https://github.com/freqtrade/technical)) - it will be necessary to build the image on your host.
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [Dockerfile.technical](https://github.com/freqtrade/freqtrade/blob/develop/Dockerfile.technical) for an example).
You'll then also need to modify the `docker-compose.yml` file and uncomment the build step, as well as rename the image to avoid naming collisions.
``` yaml
image: freqtrade_custom
build:
context: .
dockerfile: "./Dockerfile.<yourextension>"
```
You can then run `docker-compose build` to build the docker image, and run it using the commands described above.
## Freqtrade with docker without docker-compose
!!! Warning
The below documentation is provided for completeness and assumes that you are somewhat familiar with running docker containers. If you're just starting out with docker, we recommend to follow the [Freqtrade with docker-compose](#freqtrade-with-docker-compose) instructions.
### Download the official Freqtrade docker image
Pull the image from docker hub. Pull the image from docker hub.
Branches / tags available can be checked out on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/tags/). Branches / tags available can be checked out on [Dockerhub tags page](https://hub.docker.com/r/freqtradeorg/freqtrade/tags/).
```bash ```bash
docker pull freqtradeorg/freqtrade:develop docker pull freqtradeorg/freqtrade:develop

View File

@ -145,19 +145,19 @@ Edge module has following configuration options:
| Parameter | Description | | Parameter | Description |
|------------|-------------| |------------|-------------|
| `enabled` | If true, then Edge will run periodically. <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `enabled` | If true, then Edge will run periodically. <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `process_throttle_secs` | How often should Edge run in seconds. <br>*Defaults to `3600` (once per hour).* <br> ***Datatype:*** *Integer* | `process_throttle_secs` | How often should Edge run in seconds. <br>*Defaults to `3600` (once per hour).* <br> **Datatype:** Integer
| `calculate_since_number_of_days` | Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy. <br> **Note** that it downloads historical data so increasing this number would lead to slowing down the bot. <br>*Defaults to `7`.* <br> ***Datatype:*** *Integer* | `calculate_since_number_of_days` | Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy. <br> **Note** that it downloads historical data so increasing this number would lead to slowing down the bot. <br>*Defaults to `7`.* <br> **Datatype:** Integer
| `capital_available_percentage` | **DEPRECATED - [replaced with `tradable_balance_ratio`](configuration.md#Available balance)** This is the percentage of the total capital on exchange in stake currency. <br>As an example if you have 10 ETH available in your wallet on the exchange and this value is 0.5 (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers it as available capital. <br>*Defaults to `0.5`.* <br> ***Datatype:*** *Float* | `capital_available_percentage` | **DEPRECATED - [replaced with `tradable_balance_ratio`](configuration.md#Available balance)** This is the percentage of the total capital on exchange in stake currency. <br>As an example if you have 10 ETH available in your wallet on the exchange and this value is 0.5 (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers it as available capital. <br>*Defaults to `0.5`.* <br> **Datatype:** Float
| `allowed_risk` | Ratio of allowed risk per trade. <br>*Defaults to `0.01` (1%)).* <br> ***Datatype:*** *Float* | `allowed_risk` | Ratio of allowed risk per trade. <br>*Defaults to `0.01` (1%)).* <br> **Datatype:** Float
| `stoploss_range_min` | Minimum stoploss. <br>*Defaults to `-0.01`.* <br> ***Datatype:*** *Float* | `stoploss_range_min` | Minimum stoploss. <br>*Defaults to `-0.01`.* <br> **Datatype:** Float
| `stoploss_range_max` | Maximum stoploss. <br>*Defaults to `-0.10`.* <br> ***Datatype:*** *Float* | `stoploss_range_max` | Maximum stoploss. <br>*Defaults to `-0.10`.* <br> **Datatype:** Float
| `stoploss_range_step` | As an example if this is set to -0.01 then Edge will test the strategy for `[-0.01, -0,02, -0,03 ..., -0.09, -0.10]` ranges. <br> **Note** than having a smaller step means having a bigger range which could lead to slow calculation. <br> If you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10. <br>*Defaults to `-0.001`.* <br> ***Datatype:*** *Float* | `stoploss_range_step` | As an example if this is set to -0.01 then Edge will test the strategy for `[-0.01, -0,02, -0,03 ..., -0.09, -0.10]` ranges. <br> **Note** than having a smaller step means having a bigger range which could lead to slow calculation. <br> If you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10. <br>*Defaults to `-0.001`.* <br> **Datatype:** Float
| `minimum_winrate` | It filters out pairs which don't have at least minimum_winrate. <br>This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio. <br>*Defaults to `0.60`.* <br> ***Datatype:*** *Float* | `minimum_winrate` | It filters out pairs which don't have at least minimum_winrate. <br>This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio. <br>*Defaults to `0.60`.* <br> **Datatype:** Float
| `minimum_expectancy` | It filters out pairs which have the expectancy lower than this number. <br>Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return. <br>*Defaults to `0.20`.* <br> ***Datatype:*** *Float* | `minimum_expectancy` | It filters out pairs which have the expectancy lower than this number. <br>Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return. <br>*Defaults to `0.20`.* <br> **Datatype:** Float
| `min_trade_number` | When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. <br>Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br>*Defaults to `10` (it is highly recommended not to decrease this number).* <br> ***Datatype:*** *Integer* | `min_trade_number` | When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. <br>Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br>*Defaults to `10` (it is highly recommended not to decrease this number).* <br> **Datatype:** Integer
| `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your ticker interval. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> ***Datatype:*** *Integer* | `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your ticker interval. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> **Datatype:** Integer
| `remove_pumps` | Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean* | `remove_pumps` | Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br>*Defaults to `false`.* <br> **Datatype:** Boolean
## Running Edge independently ## Running Edge independently

View File

@ -5,7 +5,7 @@ This page combines common gotchas and informations which are exchange-specific a
## Binance ## Binance
!!! Tip "Stoploss on Exchange" !!! Tip "Stoploss on Exchange"
Binance is currently the only exchange supporting `stoploss_on_exchange`. It provides great advantages, so we recommend to benefit from it. Binance supports `stoploss_on_exchange` and uses stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
### Blacklists ### Blacklists
@ -22,6 +22,9 @@ Binance has been split into 3, and users must use the correct ccxt exchange ID f
## Kraken ## Kraken
!!! Tip "Stoploss on Exchange"
Kraken supports `stoploss_on_exchange` and uses stop-loss-market orders. It provides great advantages, so we recommend to benefit from it, however since the resulting order is a stoploss-market order, sell-rates are not guaranteed, which makes this feature less secure than on other exchanges. This limitation is based on kraken's policy [source](https://blog.kraken.com/post/1234/announcement-delisting-pairs-and-temporary-suspension-of-advanced-order-types/) and [source2](https://blog.kraken.com/post/1494/kraken-enables-advanced-orders-and-adds-10-currency-pairs/) - which has stoploss-limit orders disabled.
### Historic Kraken data ### Historic Kraken data
The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting. The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting.
@ -29,6 +32,10 @@ To download data for the Kraken exchange, using `--dl-trades` is mandatory, othe
## Bittrex ## Bittrex
### Order types
Bittrex does not support market orders. If you have a message at the bot startup about this, you should change order type values set in your configuration and/or in the strategy from `"market"` to `"limit"`. See some more details on this [here in the FAQ](faq.md#im-getting-the-exchange-bittrex-does-not-support-market-orders-message-and-cannot-run-my-strategy).
### Restricted markets ### Restricted markets
Bittrex split its exchange into US and International versions. Bittrex split its exchange into US and International versions.

View File

@ -45,12 +45,28 @@ the tutorial [here|Testing-new-strategies-with-Hyperopt](bot-usage.md#hyperopt-c
You can use the `/forcesell all` command from Telegram. You can use the `/forcesell all` command from Telegram.
### I get the message "RESTRICTED_MARKET" ### I'm getting the "RESTRICTED_MARKET" message in the log
Currently known to happen for US Bittrex users. Currently known to happen for US Bittrex users.
Read [the Bittrex section about restricted markets](exchanges.md#restricted-markets) for more information. Read [the Bittrex section about restricted markets](exchanges.md#restricted-markets) for more information.
### I'm getting the "Exchange Bittrex does not support market orders." message and cannot run my strategy
As the message says, Bittrex does not support market orders and you have one of the [order types](configuration.md/#understand-order_types) set to "market". Probably your strategy was written with other exchanges in mind and sets "market" orders for "stoploss" orders, which is correct and preferable for most of the exchanges supporting market orders (but not for Bittrex).
To fix it for Bittrex, redefine order types in the strategy to use "limit" instead of "market":
```
order_types = {
...
'stoploss': 'limit',
...
}
```
Same fix should be done in the configuration file, if order types are defined in your custom config rather than in the strategy.
### How do I search the bot logs for something? ### How do I search the bot logs for something?
By default, the bot writes its log into stderr stream. This is implemented this way so that you can easily separate the bot's diagnostics messages from Backtesting, Edge and Hyperopt results, output from other various Freqtrade utility subcommands, as well as from the output of your custom `print()`'s you may have inserted into your strategy. So if you need to search the log messages with the grep utility, you need to redirect stderr to stdout and disregard stdout. By default, the bot writes its log into stderr stream. This is implemented this way so that you can easily separate the bot's diagnostics messages from Backtesting, Edge and Hyperopt results, output from other various Freqtrade utility subcommands, as well as from the output of your custom `print()`'s you may have inserted into your strategy. So if you need to search the log messages with the grep utility, you need to redirect stderr to stdout and disregard stdout.

View File

@ -57,12 +57,12 @@ Rarely you may also need to override:
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss" !!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything (i.e. without creation of a "complete" Hyperopt class with dimensions, parameters, triggers and guards, as described in this document) from the default hyperopt template by relying on your strategy to do most of the calculations. You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything (i.e. without creation of a "complete" Hyperopt class with dimensions, parameters, triggers and guards, as described in this document) from the default hyperopt template by relying on your strategy to do most of the calculations.
``` python ```python
# Have a working strategy at hand. # Have a working strategy at hand.
freqtrade new-hyperopt --hyperopt EmptyHyperopt freqtrade new-hyperopt --hyperopt EmptyHyperopt
freqtrade hyperopt --hyperopt EmptyHyperopt --spaces roi stoploss trailing --strategy MyWorkingStrategy --config config.json -e 100 freqtrade hyperopt --hyperopt EmptyHyperopt --spaces roi stoploss trailing --strategy MyWorkingStrategy --config config.json -e 100
``` ```
### 1. Install a Custom Hyperopt File ### 1. Install a Custom Hyperopt File
@ -75,8 +75,8 @@ Copy the file `user_data/hyperopts/sample_hyperopt.py` into `user_data/hyperopts
There are two places you need to change in your hyperopt file to add a new buy hyperopt for testing: There are two places you need to change in your hyperopt file to add a new buy hyperopt for testing:
- Inside `indicator_space()` - the parameters hyperopt shall be optimizing. * Inside `indicator_space()` - the parameters hyperopt shall be optimizing.
- Inside `populate_buy_trend()` - applying the parameters. * Inside `populate_buy_trend()` - applying the parameters.
There you have two different types of indicators: 1. `guards` and 2. `triggers`. There you have two different types of indicators: 1. `guards` and 2. `triggers`.
@ -141,7 +141,7 @@ one we call `trigger` and use it to decide which buy trigger we want to use.
So let's write the buy strategy using these values: So let's write the buy strategy using these values:
``` python ```python
def populate_buy_trend(dataframe: DataFrame) -> DataFrame: def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = [] conditions = []
# GUARDS AND TRENDS # GUARDS AND TRENDS
@ -182,7 +182,7 @@ add it to the `populate_indicators()` method in your custom hyperopt file.
Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results. Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.
By default, FreqTrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses. By default, Freqtrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.
A different loss function can be specified by using the `--hyperopt-loss <Class-name>` argument. A different loss function can be specified by using the `--hyperopt-loss <Class-name>` argument.
This class should be in its own file within the `user_data/hyperopts/` directory. This class should be in its own file within the `user_data/hyperopts/` directory.
@ -192,6 +192,7 @@ Currently, the following loss functions are builtin:
* `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function) * `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function)
* `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration) * `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration)
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns) * `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns)
* `SharpeHyperOptLossDaily` (optimizes Sharpe Ratio calculated on daily trade returns)
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation. Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
@ -206,7 +207,7 @@ We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
freqtrade hyperopt --config config.json --hyperopt <hyperoptname> -e 5000 --spaces all freqtrade hyperopt --config config.json --hyperopt <hyperoptname> -e 5000 --spaces all
``` ```
Use `<hyperoptname>` as the name of the custom hyperopt used. Use `<hyperoptname>` as the name of the custom hyperopt used.
The `-e` option will set how many evaluations hyperopt will do. We recommend The `-e` option will set how many evaluations hyperopt will do. We recommend
running at least several thousand evaluations. running at least several thousand evaluations.
@ -265,23 +266,23 @@ The default Hyperopt Search Space, used when no `--space` command line option is
### Position stacking and disabling max market positions ### Position stacking and disabling max market positions
In some situations, you may need to run Hyperopt (and Backtesting) with the In some situations, you may need to run Hyperopt (and Backtesting) with the
`--eps`/`--enable-position-staking` and `--dmmp`/`--disable-max-market-positions` arguments. `--eps`/`--enable-position-staking` and `--dmmp`/`--disable-max-market-positions` arguments.
By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one
open trade is allowed for every traded pair. The total number of trades open for all pairs open trade is allowed for every traded pair. The total number of trades open for all pairs
is also limited by the `max_open_trades` setting. During Hyperopt/Backtesting this may lead to is also limited by the `max_open_trades` setting. During Hyperopt/Backtesting this may lead to
some potential trades to be hidden (or masked) by previosly open trades. some potential trades to be hidden (or masked) by previosly open trades.
The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times, The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times,
while `--dmmp`/`--disable-max-market-positions` disables applying `max_open_trades` while `--dmmp`/`--disable-max-market-positions` disables applying `max_open_trades`
during Hyperopt/Backtesting (which is equal to setting `max_open_trades` to a very high during Hyperopt/Backtesting (which is equal to setting `max_open_trades` to a very high
number). number).
!!! Note !!! Note
Dry/live runs will **NOT** use position stacking - therefore it does make sense to also validate the strategy without this as it's closer to reality. Dry/live runs will **NOT** use position stacking - therefore it does make sense to also validate the strategy without this as it's closer to reality.
You can also enable position stacking in the configuration file by explicitly setting You can also enable position stacking in the configuration file by explicitly setting
`"position_stacking"=true`. `"position_stacking"=true`.
### Reproducible results ### Reproducible results
@ -323,7 +324,7 @@ method, what those values match to.
So for example you had `rsi-value: 29.0` so we would look at `rsi`-block, that translates to the following code block: So for example you had `rsi-value: 29.0` so we would look at `rsi`-block, that translates to the following code block:
``` python ```python
(dataframe['rsi'] < 29.0) (dataframe['rsi'] < 29.0)
``` ```
@ -372,18 +373,19 @@ In order to use this best ROI table found by Hyperopt in backtesting and for liv
118: 0 118: 0
} }
``` ```
As stated in the comment, you can also use it as the value of the `minimal_roi` setting in the configuration file. As stated in the comment, you can also use it as the value of the `minimal_roi` setting in the configuration file.
#### Default ROI Search Space #### Default ROI Search Space
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used ticker intervals, values are rounded to 5 digits after the decimal point): If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used ticker intervals, values are rounded to 5 digits after the decimal point):
| # step | 1m | | 5m | | 1h | | 1d | | | # step | 1m | | 5m | | 1h | | 1d | |
|---|---|---|---|---|---|---|---|---| | ------ | ------ | ----------------- | -------- | ----------- | ---------- | ----------------- | ------------ | ----------------- |
| 1 | 0 | 0.01161...0.11992 | 0 | 0.03...0.31 | 0 | 0.06883...0.71124 | 0 | 0.12178...1.25835 | | 1 | 0 | 0.01161...0.11992 | 0 | 0.03...0.31 | 0 | 0.06883...0.71124 | 0 | 0.12178...1.25835 |
| 2 | 2...8 | 0.00774...0.04255 | 10...40 | 0.02...0.11 | 120...480 | 0.04589...0.25238 | 2880...11520 | 0.08118...0.44651 | | 2 | 2...8 | 0.00774...0.04255 | 10...40 | 0.02...0.11 | 120...480 | 0.04589...0.25238 | 2880...11520 | 0.08118...0.44651 |
| 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 | | 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 |
| 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 | | 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 |
These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the ticker interval used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the ticker interval used. These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the ticker interval used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the ticker interval used.
@ -416,6 +418,7 @@ In order to use this best stoploss value found by Hyperopt in backtesting and fo
# This attribute will be overridden if the config file contains "stoploss" # This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.27996 stoploss = -0.27996
``` ```
As stated in the comment, you can also use it as the value of the `stoploss` setting in the configuration file. As stated in the comment, you can also use it as the value of the `stoploss` setting in the configuration file.
#### Default Stoploss Search Space #### Default Stoploss Search Space
@ -452,6 +455,7 @@ In order to use these best trailing stop parameters found by Hyperopt in backtes
trailing_stop_positive_offset = 0.06038 trailing_stop_positive_offset = 0.06038
trailing_only_offset_is_reached = True trailing_only_offset_is_reached = True
``` ```
As stated in the comment, you can also use it as the values of the corresponding settings in the configuration file. As stated in the comment, you can also use it as the values of the corresponding settings in the configuration file.
#### Default Trailing Stop Search Space #### Default Trailing Stop Search Space

View File

@ -1,5 +1,5 @@
# Freqtrade # Freqtrade
[![Build Status](https://travis-ci.org/freqtrade/freqtrade.svg?branch=develop)](https://travis-ci.org/freqtrade/freqtrade) [![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop) [![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability) [![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)
@ -51,12 +51,15 @@ To run this bot we recommend you a cloud instance with a minimum of:
### Software requirements ### Software requirements
- Docker (Recommended)
Alternatively
- Python 3.6.x - Python 3.6.x
- pip (pip3) - pip (pip3)
- git - git
- TA-Lib - TA-Lib
- virtualenv (Recommended) - virtualenv (Recommended)
- Docker (Recommended)
## Support ## Support
@ -67,4 +70,4 @@ Click [here](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODc
## Ready to try? ## Ready to try?
Begin by reading our installation guide [here](installation). Begin by reading our installation guide [for docker](docker.md), or for [installation without docker](installation.md).

View File

@ -2,6 +2,8 @@
This page explains how to prepare your environment for running the bot. This page explains how to prepare your environment for running the bot.
Please consider using the prebuilt [docker images](docker.md) to get started quickly while trying out freqtrade evaluating how it operates.
## Prerequisite ## Prerequisite
### Requirements ### Requirements
@ -14,15 +16,7 @@ Click each one for install guide:
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended) * [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
* [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html) (install instructions below) * [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html) (install instructions below)
### API keys We also recommend a [Telegram bot](telegram-usage.md#setup-your-telegram-bot), which is optional but recommended.
Before running your bot in production you will need to setup few
external API. In production mode, the bot will require valid Exchange API
credentials. We also recommend a [Telegram bot](telegram-usage.md#setup-your-telegram-bot) (optional but recommended).
### Setup your exchange account
You will need to create API Keys (Usually you get `key` and `secret`) from the Exchange website and insert this into the appropriate fields in the configuration or when asked by the installation script.
## Quick start ## Quick start
@ -31,7 +25,7 @@ Freqtrade provides the Linux/MacOS Easy Installation script to install all depen
!!! Note !!! Note
Windows installation is explained [here](#windows). Windows installation is explained [here](#windows).
The easiest way to install and run Freqtrade is to clone the bot GitHub repository and then run the Easy Installation script, if it's available for your platform. The easiest way to install and run Freqtrade is to clone the bot Github repository and then run the Easy Installation script, if it's available for your platform.
!!! Note "Version considerations" !!! Note "Version considerations"
When cloning the repository the default working branch has the name `develop`. This branch contains all last features (can be considered as relatively stable, thanks to automated tests). The `master` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable). When cloning the repository the default working branch has the name `develop`. This branch contains all last features (can be considered as relatively stable, thanks to automated tests). The `master` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
@ -42,11 +36,12 @@ The easiest way to install and run Freqtrade is to clone the bot GitHub reposito
This can be achieved with the following commands: This can be achieved with the following commands:
```bash ```bash
git clone git@github.com:freqtrade/freqtrade.git git clone https://github.com/freqtrade/freqtrade.git
cd freqtrade cd freqtrade
git checkout master # Optional, see (1) git checkout master # Optional, see (1)
./setup.sh --install ./setup.sh --install
``` ```
(1) This command switches the cloned repository to the use of the `master` branch. It's not needed if you wish to stay on the `develop` branch. You may later switch between branches at any time with the `git checkout master`/`git checkout develop` commands. (1) This command switches the cloned repository to the use of the `master` branch. It's not needed if you wish to stay on the `develop` branch. You may later switch between branches at any time with the `git checkout master`/`git checkout develop` commands.
## Easy Installation Script (Linux/MacOS) ## Easy Installation Script (Linux/MacOS)
@ -64,11 +59,11 @@ usage:
** --install ** ** --install **
With this option, the script will install everything you need to run the bot: With this option, the script will install the bot and most dependencies:
You will need to have git and python3.6+ installed beforehand for this to work.
* Mandatory software as: `ta-lib` * Mandatory software as: `ta-lib`
* Setup your virtualenv * Setup your virtualenv under `.env/`
* Configure your `config.json` file
This option is a combination of installation tasks, `--reset` and `--config`. This option is a combination of installation tasks, `--reset` and `--config`.
@ -82,7 +77,7 @@ This option will hard reset your branch (only if you are on either `master` or `
** --config ** ** --config **
Use this option to configure the `config.json` configuration file. The script will interactively ask you questions to setup your bot and create your `config.json`. DEPRECATED - use `freqtrade new-config -c config.json` instead.
------ ------
@ -129,6 +124,17 @@ bash setup.sh -i
#### 1. Install TA-Lib #### 1. Install TA-Lib
Use the provided ta-lib installation script
```bash
sudo ./build_helpers/install_ta-lib.sh
```
!!! Note
This will use the ta-lib tar.gz included in this repository.
##### TA-Lib manual installation
Official webpage: https://mrjbq7.github.io/ta-lib/install.html Official webpage: https://mrjbq7.github.io/ta-lib/install.html
```bash ```bash
@ -184,7 +190,8 @@ python3 -m pip install -e .
# Initialize the user_directory # Initialize the user_directory
freqtrade create-userdir --userdir user_data/ freqtrade create-userdir --userdir user_data/
cp config.json.example config.json # Create a new configuration file
freqtrade new-config --config config.json
``` ```
> *To edit the config please refer to [Bot Configuration](configuration.md).* > *To edit the config please refer to [Bot Configuration](configuration.md).*

View File

@ -1,2 +1,2 @@
mkdocs-material==4.6.0 mkdocs-material==4.6.3
mdx_truly_sane_lists==1.2 mdx_truly_sane_lists==1.2

View File

@ -74,7 +74,7 @@ docker run -d \
## Consuming the API ## Consuming the API
You can consume the API by using the script `scripts/rest_client.py`. You can consume the API by using the script `scripts/rest_client.py`.
The client script only requires the `requests` module, so FreqTrade does not need to be installed on the system. The client script only requires the `requests` module, so Freqtrade does not need to be installed on the system.
``` bash ``` bash
python3 scripts/rest_client.py <command> [optional parameters] python3 scripts/rest_client.py <command> [optional parameters]

View File

@ -27,7 +27,7 @@ So this parameter will tell the bot how often it should update the stoploss orde
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally. This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
!!! Note !!! Note
Stoploss on exchange is only supported for Binance as of now. Stoploss on exchange is only supported for Binance (stop-loss-limit) and Kraken (stop-loss-market) as of now.
## Static Stop Loss ## Static Stop Loss

View File

@ -346,7 +346,7 @@ if self.dp:
``` python ``` python
if self.dp: if self.dp:
if self.dp.runmode in ('live', 'dry_run'): if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1) ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0] dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0] dataframe['best_ask'] = ob['asks'][0][0]
@ -422,7 +422,7 @@ from freqtrade.persistence import Trade
The following example queries for the current pair and trades from today, however other filters can easily be added. The following example queries for the current pair and trades from today, however other filters can easily be added.
``` python ``` python
if self.config['runmode'] in ('live', 'dry_run'): if self.config['runmode'].value in ('live', 'dry_run'):
trades = Trade.get_trades([Trade.pair == metadata['pair'], trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=1), Trade.open_date > datetime.utcnow() - timedelta(days=1),
Trade.is_open == False, Trade.is_open == False,
@ -434,7 +434,7 @@ if self.config['runmode'] in ('live', 'dry_run'):
Get amount of stake_currency currently invested in Trades: Get amount of stake_currency currently invested in Trades:
``` python ``` python
if self.config['runmode'] in ('live', 'dry_run'): if self.config['runmode'].value in ('live', 'dry_run'):
total_stakes = Trade.total_open_trades_stakes() total_stakes = Trade.total_open_trades_stakes()
``` ```
@ -442,7 +442,7 @@ Retrieve performance per pair.
Returns a List of dicts per pair. Returns a List of dicts per pair.
``` python ``` python
if self.config['runmode'] in ('live', 'dry_run'): if self.config['runmode'].value in ('live', 'dry_run'):
performance = Trade.get_overall_performance() performance = Trade.get_overall_performance()
``` ```
@ -487,7 +487,7 @@ from datetime import timedelta, datetime, timezone
# -------- # --------
# Within populate indicators (or populate_buy): # Within populate indicators (or populate_buy):
if self.config['runmode'] in ('live', 'dry_run'): if self.config['runmode'].value in ('live', 'dry_run'):
# fetch closed trades for the last 2 days # fetch closed trades for the last 2 days
trades = Trade.get_trades([Trade.pair == metadata['pair'], trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=2), Trade.open_date > datetime.utcnow() - timedelta(days=2),
@ -532,6 +532,27 @@ If you want to use a strategy from a different directory you can pass `--strateg
freqtrade trade --strategy AwesomeStrategy --strategy-path /some/directory freqtrade trade --strategy AwesomeStrategy --strategy-path /some/directory
``` ```
### Derived strategies
The strategies can be derived from other strategies. This avoids duplication of your custom strategy code. You can use this technique to override small parts of your main strategy, leaving the rest untouched:
``` python
class MyAwesomeStrategy(IStrategy):
...
stoploss = 0.13
trailing_stop = False
# All other attributes and methods are here as they
# should be in any custom strategy...
...
class MyAwesomeStrategy2(MyAwesomeStrategy):
# Override something
stoploss = 0.08
trailing_stop = True
```
Both attributes and methods may be overriden, altering behavior of the original strategy in a way you need.
### Common mistakes when developing strategies ### Common mistakes when developing strategies
Backtesting analyzes the whole time-range at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not look-ahead into the future. Backtesting analyzes the whole time-range at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not look-ahead into the future.

View File

@ -1,24 +1,28 @@
# Strategy analysis example # Strategy analysis example
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data. Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
## Setup ## Setup
```python ```python
from pathlib import Path from pathlib import Path
from freqtrade.configuration import Configuration
# Customize these according to your needs. # Customize these according to your needs.
# Initialize empty configuration object
config = Configuration.from_files([])
# Optionally, use existing configuration file
# config = Configuration.from_files(["config.json"])
# Define some constants # Define some constants
timeframe = "5m" config["ticker_interval"] = "5m"
# Name of the strategy class # Name of the strategy class
strategy_name = 'SampleStrategy' config["strategy"] = "SampleStrategy"
# Path to user data
user_data_dir = Path('user_data')
# Location of the strategy
strategy_location = user_data_dir / 'strategies'
# Location of the data # Location of the data
data_location = Path(user_data_dir, 'data', 'binance') data_location = Path(config['user_data_dir'], 'data', 'binance')
# Pair to analyze - Only use one pair here # Pair to analyze - Only use one pair here
pair = "BTC_USDT" pair = "BTC_USDT"
``` ```
@ -29,7 +33,7 @@ pair = "BTC_USDT"
from freqtrade.data.history import load_pair_history from freqtrade.data.history import load_pair_history
candles = load_pair_history(datadir=data_location, candles = load_pair_history(datadir=data_location,
timeframe=timeframe, timeframe=config["ticker_interval"],
pair=pair) pair=pair)
# Confirm success # Confirm success
@ -44,9 +48,7 @@ candles.head()
```python ```python
# Load strategy using values set above # Load strategy using values set above
from freqtrade.resolvers import StrategyResolver from freqtrade.resolvers import StrategyResolver
strategy = StrategyResolver.load_strategy({'strategy': strategy_name, strategy = StrategyResolver.load_strategy(config)
'user_data_dir': user_data_dir,
'strategy_path': strategy_location})
# Generate buy/sell signals using strategy # Generate buy/sell signals using strategy
df = strategy.analyze_ticker(candles, {'pair': pair}) df = strategy.analyze_ticker(candles, {'pair': pair})
@ -86,7 +88,7 @@ Analyze a trades dataframe (also used below for plotting)
from freqtrade.data.btanalysis import load_backtest_data from freqtrade.data.btanalysis import load_backtest_data
# Load backtest results # Load backtest results
trades = load_backtest_data(user_data_dir / "backtest_results/backtest-result.json") trades = load_backtest_data(config["user_data_dir"] / "backtest_results/backtest-result.json")
# Show value-counts per pair # Show value-counts per pair
trades.groupby("pair")["sell_reason"].value_counts() trades.groupby("pair")["sell_reason"].value_counts()

View File

@ -55,7 +55,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/reload_conf` | | Reloads the configuration file | `/reload_conf` | | Reloads the configuration file
| `/show_config` | | Shows part of the current configuration with relevant settings to operation | `/show_config` | | Shows part of the current configuration with relevant settings to operation
| `/status` | | Lists all open trades | `/status` | | Lists all open trades
| `/status table` | | List all open trades in a table format | `/status table` | | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
| `/count` | | Displays number of trades used and available | `/count` | | Displays number of trades used and available
| `/profit` | | Display a summary of your profit/loss from close trades and some stats about your performance | `/profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
| `/forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`). | `/forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).

View File

@ -36,6 +36,38 @@ optional arguments:
└── sample_strategy.py └── sample_strategy.py
``` ```
## Create new config
Creates a new configuration file, asking some questions which are important selections for a configuration.
```
usage: freqtrade new-config [-h] [-c PATH]
optional arguments:
-h, --help show this help message and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
```
!!! Warning
Only vital questions are asked. Freqtrade offers a lot more configuration possibilities, which are listed in the [Configuration documentation](configuration.md#configuration-parameters)
### Create config examples
```
$ freqtrade new-config --config config_binance.json
? Do you want to enable Dry-run (simulated trades)? Yes
? Please insert your stake currency: BTC
? Please insert your stake amount: 0.05
? Please insert max_open_trades (Integer or 'unlimited'): 5
? Please insert your ticker interval: 15m
? Please insert your display Currency (for reporting): USD
? Select exchange binance
? Do you want to enable Telegram? No
```
## Create new strategy ## Create new strategy
Creates a new strategy from a template similar to SampleStrategy. Creates a new strategy from a template similar to SampleStrategy.
@ -108,26 +140,62 @@ With custom user directory
freqtrade new-hyperopt --userdir ~/.freqtrade/ --hyperopt AwesomeHyperopt freqtrade new-hyperopt --userdir ~/.freqtrade/ --hyperopt AwesomeHyperopt
``` ```
## List Strategies ## List Strategies and List Hyperopts
Use the `list-strategies` subcommand to see all strategies in one particular directory. Use the `list-strategies` subcommand to see all strategies in one particular directory and the `list-hyperopts` subcommand to list custom Hyperopts.
These subcommands are useful for finding problems in your environment with loading strategies or hyperopt classes: modules with strategies or hyperopt classes that contain errors and failed to load are printed in red (LOAD FAILED), while strategies or hyperopt classes with duplicate names are printed in yellow (DUPLICATE NAME).
``` ```
freqtrade list-strategies --help usage: freqtrade list-strategies [-h] [-v] [--logfile FILE] [-V] [-c PATH]
usage: freqtrade list-strategies [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [--strategy-path PATH] [-1] [-d PATH] [--userdir PATH]
[--strategy-path PATH] [-1] [--no-color]
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
--strategy-path PATH Specify additional strategy lookup path. --strategy-path PATH Specify additional strategy lookup path.
-1, --one-column Print output in one column. -1, --one-column Print output in one column.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
Common arguments: Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages). -v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more details. --logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit -V, --version show program's version number and exit
-c PATH, --config PATH -c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-` Specify configuration file (default: `config.json`).
to read config from stdin. Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
```
usage: freqtrade list-hyperopts [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--hyperopt-path PATH] [-1] [--no-color]
optional arguments:
-h, --help show this help message and exit
--hyperopt-path PATH Specify additional lookup path for Hyperopt and
Hyperopt Loss functions.
-1, --one-column Print output in one column.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH -d PATH, --datadir PATH
Path to directory with historical backtesting data. Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH --userdir PATH, --user-data-dir PATH
@ -135,20 +203,34 @@ Common arguments:
``` ```
!!! Warning !!! Warning
Using this command will try to load all python files from a directory. This can be a security risk if untrusted files reside in this directory, since all module-level code is executed. Using these commands will try to load all python files from a directory. This can be a security risk if untrusted files reside in this directory, since all module-level code is executed.
Example: search default strategy directory within userdir Example: Search default strategies and hyperopts directories (within the default userdir).
``` bash
freqtrade list-strategies
freqtrade list-hyperopts
```
Example: Search strategies and hyperopts directory within the userdir.
``` bash ``` bash
freqtrade list-strategies --userdir ~/.freqtrade/ freqtrade list-strategies --userdir ~/.freqtrade/
freqtrade list-hyperopts --userdir ~/.freqtrade/
``` ```
Example: search dedicated strategy path Example: Search dedicated strategy path.
``` bash ``` bash
freqtrade list-strategies --strategy-path ~/.freqtrade/strategies/ freqtrade list-strategies --strategy-path ~/.freqtrade/strategies/
``` ```
Example: Search dedicated hyperopt path.
``` bash
freqtrade list-hyperopt --hyperopt-path ~/.freqtrade/hyperopts/
```
## List Exchanges ## List Exchanges
Use the `list-exchanges` subcommand to see the exchanges available for the bot. Use the `list-exchanges` subcommand to see the exchanges available for the bot.
@ -179,20 +261,31 @@ All exchanges supported by the ccxt library: _1btcxe, acx, adara, allcoin, anxpr
Use the `list-timeframes` subcommand to see the list of ticker intervals (timeframes) available for the exchange. Use the `list-timeframes` subcommand to see the list of ticker intervals (timeframes) available for the exchange.
``` ```
usage: freqtrade list-timeframes [-h] [--exchange EXCHANGE] [-1] usage: freqtrade list-timeframes [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [--exchange EXCHANGE] [-1]
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no --exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no config is provided.
config is provided. -1, --one-column Print output in one column.
-1, --one-column Print output in one column.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
``` ```
* Example: see the timeframes for the 'binance' exchange, set in the configuration file: * Example: see the timeframes for the 'binance' exchange, set in the configuration file:
``` ```
$ freqtrade -c config_binance.json list-timeframes $ freqtrade list-timeframes -c config_binance.json
... ...
Timeframes available for the exchange `binance`: 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M Timeframes available for the exchange `binance`: 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M
``` ```
@ -216,14 +309,16 @@ You can print info about any pair/market with these subcommands - and you can fi
These subcommands have same usage and same set of available options: These subcommands have same usage and same set of available options:
``` ```
usage: freqtrade list-markets [-h] [--exchange EXCHANGE] [--print-list] usage: freqtrade list-markets [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--print-json] [-1] [--print-csv] [-d PATH] [--userdir PATH] [--exchange EXCHANGE]
[--print-list] [--print-json] [-1] [--print-csv]
[--base BASE_CURRENCY [BASE_CURRENCY ...]] [--base BASE_CURRENCY [BASE_CURRENCY ...]]
[--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]] [--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]]
[-a] [-a]
usage: freqtrade list-pairs [-h] [--exchange EXCHANGE] [--print-list] usage: freqtrade list-pairs [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--print-json] [-1] [--print-csv] [-d PATH] [--userdir PATH] [--exchange EXCHANGE]
[--print-list] [--print-json] [-1] [--print-csv]
[--base BASE_CURRENCY [BASE_CURRENCY ...]] [--base BASE_CURRENCY [BASE_CURRENCY ...]]
[--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]] [-a] [--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]] [-a]
@ -242,6 +337,22 @@ optional arguments:
Specify quote currency(-ies). Space-separated list. Specify quote currency(-ies). Space-separated list.
-a, --all Print all pairs or market symbols. By default only -a, --all Print all pairs or market symbols. By default only
active ones are shown. active ones are shown.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
``` ```
By default, only active pairs/markets are shown. Active pairs/markets are those that can currently be traded By default, only active pairs/markets are shown. Active pairs/markets are those that can currently be traded
@ -263,7 +374,7 @@ $ freqtrade list-pairs --quote USD --print-json
human-readable list with summary: human-readable list with summary:
``` ```
$ freqtrade -c config_binance.json list-pairs --all --base BTC ETH --quote USDT USD --print-list $ freqtrade list-pairs -c config_binance.json --all --base BTC ETH --quote USDT USD --print-list
``` ```
* Print all markets on exchange "Kraken", in the tabular format: * Print all markets on exchange "Kraken", in the tabular format:
@ -311,17 +422,49 @@ You can list the hyperoptimization epochs the Hyperopt module evaluated previous
``` ```
usage: freqtrade hyperopt-list [-h] [-v] [--logfile FILE] [-V] [-c PATH] usage: freqtrade hyperopt-list [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [--best] [-d PATH] [--userdir PATH] [--best]
[--profitable] [--no-color] [--print-json] [--profitable] [--min-trades INT]
[--no-details] [--max-trades INT] [--min-avg-time FLOAT]
[--max-avg-time FLOAT] [--min-avg-profit FLOAT]
[--max-avg-profit FLOAT]
[--min-total-profit FLOAT]
[--max-total-profit FLOAT] [--no-color]
[--print-json] [--no-details]
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
--best Select only best epochs. --best Select only best epochs.
--profitable Select only profitable epochs. --profitable Select only profitable epochs.
--min-trades INT Select epochs with more than INT trades.
--max-trades INT Select epochs with less than INT trades.
--min-avg-time FLOAT Select epochs on above average time.
--max-avg-time FLOAT Select epochs on under average time.
--min-avg-profit FLOAT
Select epochs on above average profit.
--max-avg-profit FLOAT
Select epochs on below average profit.
--min-total-profit FLOAT
Select epochs on above total profit.
--max-total-profit FLOAT
Select epochs on below total profit.
--no-color Disable colorization of hyperopt results. May be --no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file. useful if you are redirecting output to a file.
--print-json Print best result detailization in JSON format. --print-json Print best result detailization in JSON format.
--no-details Do not print best epoch details. --no-details Do not print best epoch details.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
``` ```
### Examples ### Examples

View File

@ -15,11 +15,21 @@ Sample configuration (tested using IFTTT).
"value2": "limit {limit:8f}", "value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}" "value3": "{stake_amount:8f} {stake_currency}"
}, },
"webhookbuycancel": {
"value1": "Cancelling Open Buy Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhooksell": { "webhooksell": {
"value1": "Selling {pair}", "value1": "Selling {pair}",
"value2": "limit {limit:8f}", "value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}" "value3": "profit: {profit_amount:8f} {stake_currency}"
}, },
"webhooksellcancel": {
"value1": "Cancelling Open Sell Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}"
},
"webhookstatus": { "webhookstatus": {
"value1": "Status: {status}", "value1": "Status: {status}",
"value2": "", "value2": "",
@ -40,10 +50,29 @@ Possible parameters are:
* `exchange` * `exchange`
* `pair` * `pair`
* `limit` * `limit`
* `amount`
* `open_date`
* `stake_amount` * `stake_amount`
* `stake_currency` * `stake_currency`
* `fiat_currency` * `fiat_currency`
* `order_type` * `order_type`
* `current_rate`
### Webhookbuycancel
The fields in `webhook.webhookbuycancel` are filled when the bot cancels a buy order. Parameters are filled using string.format.
Possible parameters are:
* `exchange`
* `pair`
* `limit`
* `amount`
* `open_date`
* `stake_amount`
* `stake_currency`
* `fiat_currency`
* `order_type`
* `current_rate`
### Webhooksell ### Webhooksell
@ -66,6 +95,27 @@ Possible parameters are:
* `open_date` * `open_date`
* `close_date` * `close_date`
### Webhooksellcancel
The fields in `webhook.webhooksellcancel` are filled when the bot cancels a sell order. Parameters are filled using string.format.
Possible parameters are:
* `exchange`
* `pair`
* `gain`
* `limit`
* `amount`
* `open_rate`
* `current_rate`
* `profit_amount`
* `profit_percent`
* `stake_currency`
* `fiat_currency`
* `sell_reason`
* `order_type`
* `open_date`
* `close_date`
### Webhookstatus ### Webhookstatus
The fields in `webhook.webhookstatus` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format. The fields in `webhook.webhookstatus` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format.

View File

@ -1,13 +1,27 @@
""" FreqTrade bot """ """ Freqtrade bot """
__version__ = '2020.01' __version__ = '2020.02'
if __version__ == 'develop': if __version__ == 'develop':
try: try:
import subprocess import subprocess
__version__ = 'develop-' + subprocess.check_output( __version__ = 'develop-' + subprocess.check_output(
['git', 'log', '--format="%h"', '-n 1'], ['git', 'log', '--format="%h"', '-n 1'],
stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"') stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
# from datetime import datetime
# last_release = subprocess.check_output(
# ['git', 'tag']
# ).decode('utf-8').split()[-1].split(".")
# # Releases are in the format "2020.1" - we increment the latest version for dev.
# prefix = f"{last_release[0]}.{int(last_release[1]) + 1}"
# dev_version = int(datetime.now().timestamp() // 1000)
# __version__ = f"{prefix}.dev{dev_version}"
# subprocess.check_output(
# ['git', 'log', '--format="%h"', '-n 1'],
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
except Exception: except Exception:
# git not available, ignore # git not available, ignore
pass pass

View File

@ -7,13 +7,16 @@ Note: Be careful with file-scoped imports in these subfiles.
as they are parsed on startup, nothing containing optional modules should be loaded. as they are parsed on startup, nothing containing optional modules should be loaded.
""" """
from freqtrade.commands.arguments import Arguments from freqtrade.commands.arguments import Arguments
from freqtrade.commands.data_commands import start_download_data from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import (start_convert_data,
start_download_data)
from freqtrade.commands.deploy_commands import (start_create_userdir, from freqtrade.commands.deploy_commands import (start_create_userdir,
start_new_hyperopt, start_new_hyperopt,
start_new_strategy) start_new_strategy)
from freqtrade.commands.hyperopt_commands import (start_hyperopt_list, from freqtrade.commands.hyperopt_commands import (start_hyperopt_list,
start_hyperopt_show) start_hyperopt_show)
from freqtrade.commands.list_commands import (start_list_exchanges, from freqtrade.commands.list_commands import (start_list_exchanges,
start_list_hyperopts,
start_list_markets, start_list_markets,
start_list_strategies, start_list_strategies,
start_list_timeframes) start_list_timeframes)

View File

@ -6,8 +6,8 @@ from functools import partial
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from freqtrade import constants
from freqtrade.commands.cli_options import AVAILABLE_CLI_OPTIONS from freqtrade.commands.cli_options import AVAILABLE_CLI_OPTIONS
from freqtrade.constants import DEFAULT_CONFIG
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"] ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
@ -30,7 +30,9 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"] ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column"] ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized"]
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]
ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"] ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
@ -43,12 +45,17 @@ ARGS_TEST_PAIRLIST = ["config", "quote_currencies", "print_one_column", "list_pa
ARGS_CREATE_USERDIR = ["user_data_dir", "reset"] ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
ARGS_BUILD_CONFIG = ["config"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"] ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"] ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange", ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"] "timeframes", "erase", "dataformat_ohlcv", "dataformat_trades"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit", ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename", "db_url", "trade_source", "export", "exportfilename",
@ -57,15 +64,20 @@ ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url", ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "ticker_interval"] "trade_source", "ticker_interval"]
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable", "print_colorized", ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
"print_json", "hyperopt_list_no_details"] "hyperopt_list_min_trades", "hyperopt_list_max_trades",
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
"hyperopt_list_min_avg_profit", "hyperopt_list_max_avg_profit",
"hyperopt_list_min_total_profit", "hyperopt_list_max_total_profit",
"print_colorized", "print_json", "hyperopt_list_no_details"]
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index", ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperopt_show_no_header"] "print_json", "hyperopt_show_no_header"]
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs", NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-strategies", "hyperopt-list", "hyperopt-show", "plot-dataframe", "list-markets", "list-pairs", "list-strategies",
"plot-profit"] "list-hyperopts", "hyperopt-list", "hyperopt-show",
"plot-dataframe", "plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"] NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
@ -99,10 +111,23 @@ class Arguments:
# Workaround issue in argparse with action='append' and default value # Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399) # (see https://bugs.python.org/issue16399)
# Allow no-config for certain commands (like downloading / plotting) # Allow no-config for certain commands (like downloading / plotting)
if ('config' in parsed_arg and parsed_arg.config is None and if ('config' in parsed_arg and parsed_arg.config is None):
((Path.cwd() / constants.DEFAULT_CONFIG).is_file() or conf_required = ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED)
not ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED))):
parsed_arg.config = [constants.DEFAULT_CONFIG] if 'user_data_dir' in parsed_arg and parsed_arg.user_data_dir is not None:
user_dir = parsed_arg.user_data_dir
else:
# Default case
user_dir = 'user_data'
# Try loading from "user_data/config.json"
cfgfile = Path(user_dir) / DEFAULT_CONFIG
if cfgfile.is_file():
parsed_arg.config = [str(cfgfile)]
else:
# Else use "config.json".
cfgfile = Path.cwd() / DEFAULT_CONFIG
if cfgfile.is_file() or not conf_required:
parsed_arg.config = [DEFAULT_CONFIG]
return parsed_arg return parsed_arg
@ -130,11 +155,13 @@ class Arguments:
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot') self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser) self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_create_userdir, start_download_data, from freqtrade.commands import (start_create_userdir, start_convert_data,
start_download_data,
start_hyperopt_list, start_hyperopt_show, start_hyperopt_list, start_hyperopt_show,
start_list_exchanges, start_list_markets, start_list_exchanges, start_list_hyperopts,
start_list_strategies, start_new_hyperopt, start_list_markets, start_list_strategies,
start_new_strategy, start_list_timeframes, start_list_timeframes, start_new_config,
start_new_hyperopt, start_new_strategy,
start_plot_dataframe, start_plot_profit, start_plot_dataframe, start_plot_profit,
start_backtesting, start_hyperopt, start_edge, start_backtesting, start_hyperopt, start_edge,
start_test_pairlist, start_trading) start_test_pairlist, start_trading)
@ -177,6 +204,12 @@ class Arguments:
create_userdir_cmd.set_defaults(func=start_create_userdir) create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd) self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)
# add new-config subcommand
build_config_cmd = subparsers.add_parser('new-config',
help="Create new config")
build_config_cmd.set_defaults(func=start_new_config)
self._build_args(optionlist=ARGS_BUILD_CONFIG, parser=build_config_cmd)
# add new-strategy subcommand # add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy', build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy") help="Create new strategy")
@ -198,6 +231,15 @@ class Arguments:
list_strategies_cmd.set_defaults(func=start_list_strategies) list_strategies_cmd.set_defaults(func=start_list_strategies)
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd) self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
# Add list-hyperopts subcommand
list_hyperopts_cmd = subparsers.add_parser(
'list-hyperopts',
help='Print available hyperopt classes.',
parents=[_common_parser],
)
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
# Add list-exchanges subcommand # Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser( list_exchanges_cmd = subparsers.add_parser(
'list-exchanges', 'list-exchanges',
@ -251,6 +293,24 @@ class Arguments:
download_data_cmd.set_defaults(func=start_download_data) download_data_cmd.set_defaults(func=start_download_data)
self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd) self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd)
# Add convert-data subcommand
convert_data_cmd = subparsers.add_parser(
'convert-data',
help='Convert OHLCV data from one format to another.',
parents=[_common_parser],
)
convert_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=True))
self._build_args(optionlist=ARGS_CONVERT_DATA_OHLCV, parser=convert_data_cmd)
# Add convert-trade-data subcommand
convert_trade_data_cmd = subparsers.add_parser(
'convert-trade-data',
help='Convert trade-data from one format to another.',
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
self._build_args(optionlist=ARGS_CONVERT_DATA, parser=convert_trade_data_cmd)
# Add Plotting subcommand # Add Plotting subcommand
plot_dataframe_cmd = subparsers.add_parser( plot_dataframe_cmd = subparsers.add_parser(
'plot-dataframe', 'plot-dataframe',

View File

@ -0,0 +1,193 @@
import logging
from pathlib import Path
from typing import Any, Dict
from questionary import Separator, prompt
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
from freqtrade.exchange import available_exchanges, MAP_EXCHANGE_CHILDCLASS
from freqtrade.misc import render_template
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def validate_is_int(val):
try:
_ = int(val)
return True
except Exception:
return False
def validate_is_float(val):
try:
_ = float(val)
return True
except Exception:
return False
def ask_user_overwrite(config_path: Path) -> bool:
questions = [
{
"type": "confirm",
"name": "overwrite",
"message": f"File {config_path} already exists. Overwrite?",
"default": False,
},
]
answers = prompt(questions)
return answers['overwrite']
def ask_user_config() -> Dict[str, Any]:
"""
Ask user a few questions to build the configuration.
Interactive questions built using https://github.com/tmbo/questionary
:returns: Dict with keys to put into template
"""
questions = [
{
"type": "confirm",
"name": "dry_run",
"message": "Do you want to enable Dry-run (simulated trades)?",
"default": True,
},
{
"type": "text",
"name": "stake_currency",
"message": "Please insert your stake currency:",
"default": 'BTC',
},
{
"type": "text",
"name": "stake_amount",
"message": "Please insert your stake amount:",
"default": "0.01",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
},
{
"type": "text",
"name": "max_open_trades",
"message": f"Please insert max_open_trades (Integer or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "3",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_int(val)
},
{
"type": "text",
"name": "ticker_interval",
"message": "Please insert your ticker interval:",
"default": "5m",
},
{
"type": "text",
"name": "fiat_display_currency",
"message": "Please insert your display Currency (for reporting):",
"default": 'USD',
},
{
"type": "select",
"name": "exchange_name",
"message": "Select exchange",
"choices": [
"binance",
"binanceje",
"binanceus",
"bittrex",
"kraken",
Separator(),
"other",
],
},
{
"type": "autocomplete",
"name": "exchange_name",
"message": "Type your exchange name (Must be supported by ccxt)",
"choices": available_exchanges(),
"when": lambda x: x["exchange_name"] == 'other'
},
{
"type": "password",
"name": "exchange_key",
"message": "Insert Exchange Key",
"when": lambda x: not x['dry_run']
},
{
"type": "password",
"name": "exchange_secret",
"message": "Insert Exchange Secret",
"when": lambda x: not x['dry_run']
},
{
"type": "confirm",
"name": "telegram",
"message": "Do you want to enable Telegram?",
"default": False,
},
{
"type": "password",
"name": "telegram_token",
"message": "Insert Telegram token",
"when": lambda x: x['telegram']
},
{
"type": "text",
"name": "telegram_chat_id",
"message": "Insert Telegram chat id",
"when": lambda x: x['telegram']
},
]
answers = prompt(questions)
if not answers:
# Interrupted questionary sessions return an empty dict.
raise OperationalException("User interrupted interactive questions.")
return answers
def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
"""
Applies selections to the template and writes the result to config_path
:param config_path: Path object for new config file. Should not exist yet
:param selecions: Dict containing selections taken by the user.
"""
from jinja2.exceptions import TemplateNotFound
try:
exchange_template = MAP_EXCHANGE_CHILDCLASS.get(
selections['exchange_name'], selections['exchange_name'])
selections['exchange'] = render_template(
templatefile=f"subtemplates/exchange_{exchange_template}.j2",
arguments=selections
)
except TemplateNotFound:
selections['exchange'] = render_template(
templatefile=f"subtemplates/exchange_generic.j2",
arguments=selections
)
config_text = render_template(templatefile='base_config.json.j2',
arguments=selections)
logger.info(f"Writing config to `{config_path}`.")
config_path.write_text(config_text)
def start_new_config(args: Dict[str, Any]) -> None:
"""
Create a new strategy from a template
Asking the user questions to fill out the templateaccordingly.
"""
config_path = Path(args['config'][0])
if config_path.exists():
overwrite = ask_user_overwrite(config_path)
if overwrite:
config_path.unlink()
else:
raise OperationalException(
f"Configuration file `{config_path}` already exists. "
"Please delete it or use a different configuration file name.")
selections = ask_user_config()
deploy_new_config(config_path, selections)

View File

@ -59,7 +59,8 @@ AVAILABLE_CLI_OPTIONS = {
), ),
"config": Arg( "config": Arg(
'-c', '--config', '-c', '--config',
help=f'Specify configuration file (default: `{constants.DEFAULT_CONFIG}`). ' help=f'Specify configuration file (default: `userdir/{constants.DEFAULT_CONFIG}` '
f'or `config.json` whichever exists). '
f'Multiple --config options may be used. ' f'Multiple --config options may be used. '
f'Can be set to `-` to read config from stdin.', f'Can be set to `-` to read config from stdin.',
action='append', action='append',
@ -256,7 +257,7 @@ AVAILABLE_CLI_OPTIONS = {
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). ' help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
'Different functions can generate completely different results, ' 'Different functions can generate completely different results, '
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: ' 'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss.' 'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily.'
'(default: `%(default)s`).', '(default: `%(default)s`).',
metavar='NAME', metavar='NAME',
default=constants.DEFAULT_HYPEROPT_LOSS, default=constants.DEFAULT_HYPEROPT_LOSS,
@ -332,6 +333,30 @@ AVAILABLE_CLI_OPTIONS = {
'desired timeframe as specified as --timeframes/-t.', 'desired timeframe as specified as --timeframes/-t.',
action='store_true', action='store_true',
), ),
"format_from": Arg(
'--format-from',
help='Source format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"format_to": Arg(
'--format-to',
help='Destination format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"dataformat_ohlcv": Arg(
'--data-format-ohlcv',
help='Storage format for downloaded ohlcv data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='json'
),
"dataformat_trades": Arg(
'--data-format-trades',
help='Storage format for downloaded trades data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='jsongz'
),
"exchange": Arg( "exchange": Arg(
'--exchange', '--exchange',
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). ' help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '
@ -398,6 +423,54 @@ AVAILABLE_CLI_OPTIONS = {
help='Select only best epochs.', help='Select only best epochs.',
action='store_true', action='store_true',
), ),
"hyperopt_list_min_trades": Arg(
'--min-trades',
help='Select epochs with more than INT trades.',
type=check_int_positive,
metavar='INT',
),
"hyperopt_list_max_trades": Arg(
'--max-trades',
help='Select epochs with less than INT trades.',
type=check_int_positive,
metavar='INT',
),
"hyperopt_list_min_avg_time": Arg(
'--min-avg-time',
help='Select epochs on above average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_time": Arg(
'--max-avg-time',
help='Select epochs on under average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_avg_profit": Arg(
'--min-avg-profit',
help='Select epochs on above average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_profit": Arg(
'--max-avg-profit',
help='Select epochs on below average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_total_profit": Arg(
'--min-total-profit',
help='Select epochs on above total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_total_profit": Arg(
'--max-total-profit',
help='Select epochs on below total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_no_details": Arg( "hyperopt_list_no_details": Arg(
'--no-details', '--no-details',
help='Do not print best epoch details.', help='Do not print best epoch details.',

View File

@ -5,6 +5,8 @@ from typing import Any, Dict, List
import arrow import arrow
from freqtrade.configuration import TimeRange, setup_utils_configuration from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.data.converter import (convert_ohlcv_format,
convert_trades_format)
from freqtrade.data.history import (convert_trades_to_ohlcv, from freqtrade.data.history import (convert_trades_to_ohlcv,
refresh_backtest_ohlcv_data, refresh_backtest_ohlcv_data,
refresh_backtest_trades_data) refresh_backtest_trades_data)
@ -37,22 +39,32 @@ def start_download_data(args: Dict[str, Any]) -> None:
pairs_not_available: List[str] = [] pairs_not_available: List[str] = []
# Init exchange # Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config) exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
# Manual validations of relevant settings
exchange.validate_pairs(config['pairs'])
for timeframe in config['timeframes']:
exchange.validate_timeframes(timeframe)
try: try:
if config.get('download_trades'): if config.get('download_trades'):
pairs_not_available = refresh_backtest_trades_data( pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=config["pairs"], datadir=config['datadir'], exchange, pairs=config["pairs"], datadir=config['datadir'],
timerange=timerange, erase=config.get("erase")) timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_trades'])
# Convert downloaded trade data to different timeframes # Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv( convert_trades_to_ohlcv(
pairs=config["pairs"], timeframes=config["timeframes"], pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=config.get("erase")) datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
else: else:
pairs_not_available = refresh_backtest_ohlcv_data( pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=config["pairs"], timeframes=config["timeframes"], exchange, pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=config.get("erase")) datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_ohlcv'])
except KeyboardInterrupt: except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...") sys.exit("SIGINT received, aborting ...")
@ -61,3 +73,18 @@ def start_download_data(args: Dict[str, Any]) -> None:
if pairs_not_available: if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available " logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.") f"on exchange {exchange.name}.")
def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
"""
Convert data from one format to another
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
convert_ohlcv_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])
else:
convert_trades_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])

View File

@ -6,7 +6,7 @@ from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration.directory_operations import (copy_sample_files, from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir) create_userdata_dir)
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGY from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template from freqtrade.misc import render_template
from freqtrade.state import RunMode from freqtrade.state import RunMode
@ -28,7 +28,7 @@ def start_create_userdir(args: Dict[str, Any]) -> None:
sys.exit(1) sys.exit(1)
def deploy_new_strategy(strategy_name, strategy_path: Path, subtemplate: str): def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: str) -> None:
""" """
Deploy new strategy from template to strategy_path Deploy new strategy from template to strategy_path
""" """
@ -57,7 +57,7 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
if args["strategy"] == "DefaultStrategy": if args["strategy"] == "DefaultStrategy":
raise OperationalException("DefaultStrategy is not allowed as name.") raise OperationalException("DefaultStrategy is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_STRATEGY / (args["strategy"] + ".py") new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args["strategy"] + ".py")
if new_path.exists(): if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. " raise OperationalException(f"`{new_path}` already exists. "
@ -69,7 +69,7 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
raise OperationalException("`new-strategy` requires --strategy to be set.") raise OperationalException("`new-strategy` requires --strategy to be set.")
def deploy_new_hyperopt(hyperopt_name, hyperopt_path: Path, subtemplate: str): def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: str) -> None:
""" """
Deploys a new hyperopt template to hyperopt_path Deploys a new hyperopt template to hyperopt_path
""" """

94
freqtrade/commands/hyperopt_commands.py Normal file → Executable file
View File

@ -19,13 +19,24 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE) config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
only_best = config.get('hyperopt_list_best', False)
only_profitable = config.get('hyperopt_list_profitable', False)
print_colorized = config.get('print_colorized', False) print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False) print_json = config.get('print_json', False)
no_details = config.get('hyperopt_list_no_details', False) no_details = config.get('hyperopt_list_no_details', False)
no_header = False no_header = False
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
trials_file = (config['user_data_dir'] / trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle') 'hyperopt_results' / 'hyperopt_results.pickle')
@ -33,7 +44,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
trials = Hyperopt.load_previous_results(trials_file) trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials) total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, only_best, only_profitable) trials = _hyperopt_filter_trials(trials, filteroptions)
# TODO: fetch the interval for epochs to print from the cli option # TODO: fetch the interval for epochs to print from the cli option
epoch_start, epoch_stop = 0, None epoch_start, epoch_stop = 0, None
@ -44,7 +55,8 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
try: try:
# Human-friendly indexes used here (starting from 1) # Human-friendly indexes used here (starting from 1)
for val in trials[epoch_start:epoch_stop]: for val in trials[epoch_start:epoch_stop]:
Hyperopt.print_results_explanation(val, total_epochs, not only_best, print_colorized) Hyperopt.print_results_explanation(val, total_epochs,
not filteroptions['only_best'], print_colorized)
except KeyboardInterrupt: except KeyboardInterrupt:
print('User interrupted..') print('User interrupted..')
@ -63,8 +75,18 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE) config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
only_best = config.get('hyperopt_list_best', False) filteroptions = {
only_profitable = config.get('hyperopt_list_profitable', False) 'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
no_header = config.get('hyperopt_show_no_header', False) no_header = config.get('hyperopt_show_no_header', False)
trials_file = (config['user_data_dir'] / trials_file = (config['user_data_dir'] /
@ -74,7 +96,7 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
trials = Hyperopt.load_previous_results(trials_file) trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials) total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, only_best, only_profitable) trials = _hyperopt_filter_trials(trials, filteroptions)
trials_epochs = len(trials) trials_epochs = len(trials)
n = config.get('hyperopt_show_index', -1) n = config.get('hyperopt_show_index', -1)
@ -97,18 +119,66 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
header_str="Epoch details") header_str="Epoch details")
def _hyperopt_filter_trials(trials: List, only_best: bool, only_profitable: bool) -> List: def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
""" """
Filter our items from the list of hyperopt results Filter our items from the list of hyperopt results
""" """
if only_best: if filteroptions['only_best']:
trials = [x for x in trials if x['is_best']] trials = [x for x in trials if x['is_best']]
if only_profitable: if filteroptions['only_profitable']:
trials = [x for x in trials if x['results_metrics']['profit'] > 0] trials = [x for x in trials if x['results_metrics']['profit'] > 0]
if filteroptions['filter_min_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
]
if filteroptions['filter_max_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
]
if filteroptions['filter_min_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
]
if filteroptions['filter_min_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
> filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
< filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
]
logger.info(f"{len(trials)} " + logger.info(f"{len(trials)} " +
("best " if only_best else "") + ("best " if filteroptions['only_best'] else "") +
("profitable " if only_profitable else "") + ("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.") "epochs found.")
return trials return trials

View File

@ -3,13 +3,15 @@ import logging
import sys import sys
from collections import OrderedDict from collections import OrderedDict
from pathlib import Path from pathlib import Path
from typing import Any, Dict from typing import Any, Dict, List
from colorama import init as colorama_init
from colorama import Fore, Style
import rapidjson import rapidjson
from tabulate import tabulate from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_STRATEGY from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, ccxt_exchanges, from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
market_is_active, symbol_is_pair) market_is_active, symbol_is_pair)
@ -36,22 +38,63 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}") print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}")
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
if print_colorized:
colorama_init(autoreset=True)
red = Fore.RED
yellow = Fore.YELLOW
reset = Style.RESET_ALL
else:
red = ''
yellow = ''
reset = ''
names = [s['name'] for s in objs]
objss_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location'].name,
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
} for s in objs]
print(tabulate(objss_to_print, headers='keys', tablefmt='pipe'))
def start_list_strategies(args: Dict[str, Any]) -> None: def start_list_strategies(args: Dict[str, Any]) -> None:
""" """
Print Strategies available in a directory Print files with Strategy custom classes available in the directory
""" """
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE) config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGY)) directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategies = StrategyResolver.search_all_objects(directory) strategy_objs = StrategyResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically # Sort alphabetically
strategies = sorted(strategies, key=lambda x: x['name']) strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
strats_to_print = [{'name': s['name'], 'location': s['location'].name} for s in strategies]
if args['print_one_column']: if args['print_one_column']:
print('\n'.join([s['name'] for s in strategies])) print('\n'.join([s['name'] for s in strategy_objs]))
else: else:
print(tabulate(strats_to_print, headers='keys', tablefmt='pipe')) _print_objs_tabular(strategy_objs, config.get('print_colorized', False))
def start_list_hyperopts(args: Dict[str, Any]) -> None:
"""
Print files with HyperOpt custom classes available in the directory
"""
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('hyperopt_path', config['user_data_dir'] / USERPATH_HYPEROPTS))
hyperopt_objs = HyperOptResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
hyperopt_objs = sorted(hyperopt_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in hyperopt_objs]))
else:
_print_objs_tabular(hyperopt_objs, config.get('print_colorized', False))
def start_list_timeframes(args: Dict[str, Any]) -> None: def start_list_timeframes(args: Dict[str, Any]) -> None:

View File

@ -5,7 +5,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode from freqtrade.state import RunMode
def validate_plot_args(args: Dict[str, Any]): def validate_plot_args(args: Dict[str, Any]) -> None:
if not args.get('datadir') and not args.get('config'): if not args.get('datadir') and not args.get('config'):
raise OperationalException( raise OperationalException(
"You need to specify either `--datadir` or `--config` " "You need to specify either `--datadir` or `--config` "

View File

@ -10,7 +10,7 @@ from freqtrade.state import RunMode
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def remove_credentials(config: Dict[str, Any]): def remove_credentials(config: Dict[str, Any]) -> None:
""" """
Removes exchange keys from the configuration and specifies dry-run Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils. Used for backtesting / hyperopt / edge and utils.

View File

@ -310,6 +310,30 @@ class Configuration:
self._args_to_config(config, argname='hyperopt_list_profitable', self._args_to_config(config, argname='hyperopt_list_profitable',
logstring='Parameter --profitable detected: {}') logstring='Parameter --profitable detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_trades',
logstring='Parameter --min-trades detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_trades',
logstring='Parameter --max-trades detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_avg_time',
logstring='Parameter --min-avg-time detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_avg_time',
logstring='Parameter --max-avg-time detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_avg_profit',
logstring='Parameter --min-avg-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_avg_profit',
logstring='Parameter --max-avg-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_total_profit',
logstring='Parameter --min-total-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_total_profit',
logstring='Parameter --max-total-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_no_details', self._args_to_config(config, argname='hyperopt_list_no_details',
logstring='Parameter --no-details detected: {}') logstring='Parameter --no-details detected: {}')
@ -340,9 +364,16 @@ class Configuration:
self._args_to_config(config, argname='days', self._args_to_config(config, argname='days',
logstring='Detected --days: {}') logstring='Detected --days: {}')
self._args_to_config(config, argname='download_trades', self._args_to_config(config, argname='download_trades',
logstring='Detected --dl-trades: {}') logstring='Detected --dl-trades: {}')
self._args_to_config(config, argname='dataformat_ohlcv',
logstring='Using "{}" to store OHLCV data.')
self._args_to_config(config, argname='dataformat_trades',
logstring='Using "{}" to store trades data.')
def _process_runmode(self, config: Dict[str, Any]) -> None: def _process_runmode(self, config: Dict[str, Any]) -> None:
if not self.runmode: if not self.runmode:

View File

@ -13,7 +13,7 @@ logger = logging.getLogger(__name__)
def check_conflicting_settings(config: Dict[str, Any], def check_conflicting_settings(config: Dict[str, Any],
section1: str, name1: str, section1: str, name1: str,
section2: str, name2: str): section2: str, name2: str) -> None:
section1_config = config.get(section1, {}) section1_config = config.get(section1, {})
section2_config = config.get(section2, {}) section2_config = config.get(section2, {})
if name1 in section1_config and name2 in section2_config: if name1 in section1_config and name2 in section2_config:
@ -28,7 +28,7 @@ def check_conflicting_settings(config: Dict[str, Any],
def process_deprecated_setting(config: Dict[str, Any], def process_deprecated_setting(config: Dict[str, Any],
section1: str, name1: str, section1: str, name1: str,
section2: str, name2: str): section2: str, name2: str) -> None:
section2_config = config.get(section2, {}) section2_config = config.get(section2, {})
if name2 in section2_config: if name2 in section2_config:

View File

@ -23,7 +23,7 @@ def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> Pat
return folder return folder
def create_userdata_dir(directory: str, create_dir=False) -> Path: def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
""" """
Create userdata directory structure. Create userdata directory structure.
if create_dir is True, then the parent-directory will be created if it does not exist. if create_dir is True, then the parent-directory will be created if it does not exist.

View File

@ -7,6 +7,7 @@ from typing import Optional
import arrow import arrow
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -30,7 +31,7 @@ class TimeRange:
return (self.starttype == other.starttype and self.stoptype == other.stoptype return (self.starttype == other.starttype and self.stoptype == other.stoptype
and self.startts == other.startts and self.stopts == other.stopts) and self.startts == other.startts and self.stopts == other.stopts)
def subtract_start(self, seconds) -> None: def subtract_start(self, seconds: int) -> None:
""" """
Subtracts <seconds> from startts if startts is set. Subtracts <seconds> from startts if startts is set.
:param seconds: Seconds to subtract from starttime :param seconds: Seconds to subtract from starttime
@ -59,7 +60,7 @@ class TimeRange:
self.starttype = 'date' self.starttype = 'date'
@staticmethod @staticmethod
def parse_timerange(text: Optional[str]): def parse_timerange(text: Optional[str]) -> 'TimeRange':
""" """
Parse the value of the argument --timerange to determine what is the range desired Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange :param text: value from --timerange

View File

@ -17,20 +17,24 @@ REQUIRED_ORDERTIF = ['buy', 'sell']
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange'] REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
ORDERTYPE_POSSIBILITIES = ['limit', 'market'] ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc'] ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'PrecisionFilter', 'PriceFilter'] AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'PrecisionFilter', 'PriceFilter', 'SpreadFilter']
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
DRY_RUN_WALLET = 1000 DRY_RUN_WALLET = 1000
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
USERPATH_HYPEROPTS = 'hyperopts' USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGY = 'strategies' USERPATH_STRATEGIES = 'strategies'
USERPATH_NOTEBOOKS = 'notebooks'
# Soure files with destination directories within user-directory # Soure files with destination directories within user-directory
USER_DATA_FILES = { USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGY, 'sample_strategy.py': USERPATH_STRATEGIES,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS, 'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
'sample_hyperopt_loss.py': USERPATH_HYPEROPTS, 'sample_hyperopt_loss.py': USERPATH_HYPEROPTS,
'sample_hyperopt.py': USERPATH_HYPEROPTS, 'sample_hyperopt.py': USERPATH_HYPEROPTS,
'strategy_analysis_example.ipynb': 'notebooks', 'strategy_analysis_example.ipynb': USERPATH_NOTEBOOKS,
} }
SUPPORTED_FIAT = [ SUPPORTED_FIAT = [
@ -76,7 +80,7 @@ CONF_SCHEMA = {
'amend_last_stake_amount': {'type': 'boolean', 'default': False}, 'amend_last_stake_amount': {'type': 'boolean', 'default': False},
'last_stake_amount_min_ratio': { 'last_stake_amount_min_ratio': {
'type': 'number', 'minimum': 0.0, 'maximum': 1.0, 'default': 0.5 'type': 'number', 'minimum': 0.0, 'maximum': 1.0, 'default': 0.5
}, },
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT}, 'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
'dry_run': {'type': 'boolean'}, 'dry_run': {'type': 'boolean'},
'dry_run_wallet': {'type': 'number', 'default': DRY_RUN_WALLET}, 'dry_run_wallet': {'type': 'number', 'default': DRY_RUN_WALLET},
@ -189,7 +193,9 @@ CONF_SCHEMA = {
'properties': { 'properties': {
'enabled': {'type': 'boolean'}, 'enabled': {'type': 'boolean'},
'webhookbuy': {'type': 'object'}, 'webhookbuy': {'type': 'object'},
'webhookbuycancel': {'type': 'object'},
'webhooksell': {'type': 'object'}, 'webhooksell': {'type': 'object'},
'webhooksellcancel': {'type': 'object'},
'webhookstatus': {'type': 'object'}, 'webhookstatus': {'type': 'object'},
}, },
}, },
@ -213,11 +219,22 @@ CONF_SCHEMA = {
'forcebuy_enable': {'type': 'boolean'}, 'forcebuy_enable': {'type': 'boolean'},
'internals': { 'internals': {
'type': 'object', 'type': 'object',
'default': {},
'properties': { 'properties': {
'process_throttle_secs': {'type': 'integer'}, 'process_throttle_secs': {'type': 'integer'},
'interval': {'type': 'integer'}, 'interval': {'type': 'integer'},
'sd_notify': {'type': 'boolean'}, 'sd_notify': {'type': 'boolean'},
} }
},
'dataformat_ohlcv': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
},
'dataformat_trades': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
} }
}, },
'definitions': { 'definitions': {
@ -288,9 +305,14 @@ SCHEMA_TRADE_REQUIRED = [
'unfilledtimeout', 'unfilledtimeout',
'stoploss', 'stoploss',
'minimal_roi', 'minimal_roi',
'internals',
'dataformat_ohlcv',
'dataformat_trades',
] ]
SCHEMA_MINIMAL_REQUIRED = [ SCHEMA_MINIMAL_REQUIRED = [
'exchange', 'exchange',
'dry_run', 'dry_run',
'dataformat_ohlcv',
'dataformat_trades',
] ]

View File

@ -3,7 +3,7 @@ Helpers when analyzing backtest data
""" """
import logging import logging
from pathlib import Path from pathlib import Path
from typing import Dict from typing import Dict, Union
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@ -20,7 +20,7 @@ BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "du
"open_rate", "close_rate", "open_at_end", "sell_reason"] "open_rate", "close_rate", "open_at_end", "sell_reason"]
def load_backtest_data(filename) -> pd.DataFrame: def load_backtest_data(filename: Union[Path, str]) -> pd.DataFrame:
""" """
Load backtest data file. Load backtest data file.
:param filename: pathlib.Path object, or string pointing to the file. :param filename: pathlib.Path object, or string pointing to the file.
@ -151,7 +151,8 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> p
return trades return trades
def combine_tickers_with_mean(tickers: Dict[str, pd.DataFrame], column: str = "close"): def combine_tickers_with_mean(tickers: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
""" """
Combine multiple dataframes "column" Combine multiple dataframes "column"
:param tickers: Dict of Dataframes, dict key should be pair. :param tickers: Dict of Dataframes, dict key should be pair.

View File

@ -2,10 +2,13 @@
Functions to convert data from one format to another Functions to convert data from one format to another
""" """
import logging import logging
from datetime import datetime, timezone
from typing import Any, Dict
import pandas as pd import pandas as pd
from pandas import DataFrame, to_datetime from pandas import DataFrame, to_datetime
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -24,7 +27,7 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
:return: DataFrame :return: DataFrame
""" """
logger.debug("Parsing tickerlist to dataframe") logger.debug("Parsing tickerlist to dataframe")
cols = ['date', 'open', 'high', 'low', 'close', 'volume'] cols = DEFAULT_DATAFRAME_COLUMNS
frame = DataFrame(ticker, columns=cols) frame = DataFrame(ticker, columns=cols)
frame['date'] = to_datetime(frame['date'], frame['date'] = to_datetime(frame['date'],
@ -37,9 +40,29 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
# and fail with exception... # and fail with exception...
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float', frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'}) 'volume': 'float'})
return clean_ohlcv_dataframe(frame, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a ohlcv dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing ohlcv data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks # group by index and aggregate results to eliminate duplicate ticks
frame = frame.groupby(by='date', as_index=False, sort=True).agg({ data = data.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first', 'open': 'first',
'high': 'max', 'high': 'max',
'low': 'min', 'low': 'min',
@ -48,13 +71,13 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
}) })
# eliminate partial candle # eliminate partial candle
if drop_incomplete: if drop_incomplete:
frame.drop(frame.tail(1).index, inplace=True) data.drop(data.tail(1).index, inplace=True)
logger.debug('Dropping last candle') logger.debug('Dropping last candle')
if fill_missing: if fill_missing:
return ohlcv_fill_up_missing_data(frame, timeframe, pair) return ohlcv_fill_up_missing_data(data, timeframe, pair)
else: else:
return frame return data
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame: def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
@ -92,8 +115,26 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
return df return df
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame: def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
""" """
TODO: This should get a dedicated test
Gets order book list, returns dataframe with below format per suggested by creslin Gets order book list, returns dataframe with below format per suggested by creslin
------------------------------------------------------------------- -------------------------------------------------------------------
b_sum b_size bids asks a_size a_sum b_sum b_size bids asks a_size a_sum
@ -116,12 +157,13 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
return frame return frame
def trades_to_ohlcv(trades: list, timeframe: str) -> list: def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
""" """
Converts trades list to ohlcv list Converts trades list to ohlcv list
TODO: This should get a dedicated test
:param trades: List of trades, as returned by ccxt.fetch_trades. :param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Ticker timeframe to resample data to :param timeframe: Ticker timeframe to resample data to
:return: ohlcv timeframe as list (as returned by ccxt.fetch_ohlcv) :return: ohlcv Dataframe.
""" """
from freqtrade.exchange import timeframe_to_minutes from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe) ticker_minutes = timeframe_to_minutes(timeframe)
@ -131,8 +173,68 @@ def trades_to_ohlcv(trades: list, timeframe: str) -> list:
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc() df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum() df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
df_new['date'] = df_new.index.astype("int64") // 10 ** 6 df_new['date'] = df_new.index
# Drop 0 volume rows # Drop 0 volume rows
df_new = df_new.dropna() df_new = df_new.dropna()
columns = ["date", "open", "high", "low", "close", "volume"] return df_new[DEFAULT_DATAFRAME_COLUMNS]
return list(zip(*[df_new[x].values.tolist() for x in columns]))
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert trades from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
if 'pairs' not in config:
config['pairs'] = src.trades_get_pairs(config['datadir'])
logger.info(f"Converting trades for {config['pairs']}")
for pair in config['pairs']:
data = src.trades_load(pair=pair)
logger.info(f"Converting {len(data)} trades for {pair}")
trg.trades_store(pair, data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source Trade data for {pair}.")
src.trades_purge(pair=pair)
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert ohlcv from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('ticker_interval')])
logger.info(f"Converting OHLCV for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
# Check timeframes or fall back to ticker_interval.
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
logger.info(f"Converting OHLCV for {config['pairs']}")
for timeframe in timeframes:
for pair in config['pairs']:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0)
logger.info(f"Converting {len(data)} candles for {pair}")
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe)

View File

@ -0,0 +1,14 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
from .history_utils import (convert_trades_to_ohlcv, # noqa: F401
get_timerange, load_data, load_pair_history,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data, refresh_data,
validate_backtest_data)
from .idatahandler import get_datahandler # noqa: F401

View File

@ -1,138 +1,31 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
import logging import logging
import operator import operator
from copy import deepcopy
from datetime import datetime, timezone from datetime import datetime, timezone
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple from typing import Dict, List, Optional, Tuple
import arrow import arrow
from pandas import DataFrame from pandas import DataFrame
from freqtrade import misc
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (Exchange, timeframe_to_minutes, from freqtrade.exchange import Exchange
timeframe_to_seconds)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
"""
Trim tickerlist based on given timerange
"""
if not tickerlist:
return tickerlist
start_index = 0
stop_index = len(tickerlist)
if timerange.starttype == 'date':
while (start_index < len(tickerlist) and
tickerlist[start_index][0] < timerange.startts * 1000):
start_index += 1
if timerange.stoptype == 'date':
while (stop_index > 0 and
tickerlist[stop_index-1][0] > timerange.stopts * 1000):
stop_index -= 1
if start_index > stop_index:
raise ValueError(f'The timerange [{timerange.startts},{timerange.stopts}] is incorrect')
return tickerlist[start_index:stop_index]
def trim_dataframe(df: DataFrame, timerange: TimeRange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def load_tickerdata_file(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:return: tickerlist or None if unsuccessful
"""
filename = pair_data_filename(datadir, pair, timeframe)
pairdata = misc.file_load_json(filename)
if not pairdata:
return []
if timerange:
pairdata = trim_tickerlist(pairdata, timerange)
return pairdata
def store_tickerdata_file(datadir: Path, pair: str,
timeframe: str, data: list, is_zip: bool = False):
"""
Stores tickerdata to file
"""
filename = pair_data_filename(datadir, pair, timeframe)
misc.file_dump_json(filename, data, is_zip=is_zip)
def load_trades_file(datadir: Path, pair: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:return: tradelist or empty list if unsuccesful
"""
filename = pair_trades_filename(datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def store_trades_file(datadir: Path, pair: str,
data: list, is_zip: bool = True):
"""
Stores tickerdata to file
"""
filename = pair_trades_filename(datadir, pair)
misc.file_dump_json(filename, data, is_zip=is_zip)
def _validate_pairdata(pair, pairdata, timerange: TimeRange):
if timerange.starttype == 'date' and pairdata[0][0] > timerange.startts * 1000:
logger.warning('Missing data at start for pair %s, data starts at %s',
pair, arrow.get(pairdata[0][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
if timerange.stoptype == 'date' and pairdata[-1][0] < timerange.stopts * 1000:
logger.warning('Missing data at end for pair %s, data ends at %s',
pair, arrow.get(pairdata[-1][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
def load_pair_history(pair: str, def load_pair_history(pair: str,
timeframe: str, timeframe: str,
datadir: Path, datadir: Path, *,
timerange: Optional[TimeRange] = None, timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True, fill_up_missing: bool = True,
drop_incomplete: bool = True, drop_incomplete: bool = True,
startup_candles: int = 0, startup_candles: int = 0,
data_format: str = None,
data_handler: IDataHandler = None,
) -> DataFrame: ) -> DataFrame:
""" """
Load cached ticker history for the given pair. Load cached ticker history for the given pair.
@ -140,39 +33,34 @@ def load_pair_history(pair: str,
:param pair: Pair to load data for :param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m") :param timeframe: Ticker timeframe (e.g. "5m")
:param datadir: Path to the data storage location. :param datadir: Path to the data storage location.
:param data_format: Format of the data. Ignored if data_handler is set.
:param timerange: Limit data to be loaded to this timerange :param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles :param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete. :param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period :param startup_candles: Additional candles to load at the start of the period
:param data_handler: Initialized data-handler to use.
Will be initialized from data_format if not set
:return: DataFrame with ohlcv data, or empty DataFrame :return: DataFrame with ohlcv data, or empty DataFrame
""" """
timerange_startup = deepcopy(timerange) data_handler = get_datahandler(datadir, data_format, data_handler)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdata = load_tickerdata_file(datadir, pair, timeframe, timerange=timerange_startup) return data_handler.ohlcv_load(pair=pair,
timeframe=timeframe,
if pairdata: timerange=timerange,
if timerange_startup: fill_missing=fill_up_missing,
_validate_pairdata(pair, pairdata, timerange_startup) drop_incomplete=drop_incomplete,
return parse_ticker_dataframe(pairdata, timeframe, pair=pair, startup_candles=startup_candles,
fill_missing=fill_up_missing, )
drop_incomplete=drop_incomplete)
else:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return DataFrame()
def load_data(datadir: Path, def load_data(datadir: Path,
timeframe: str, timeframe: str,
pairs: List[str], pairs: List[str], *,
timerange: Optional[TimeRange] = None, timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True, fill_up_missing: bool = True,
startup_candles: int = 0, startup_candles: int = 0,
fail_without_data: bool = False fail_without_data: bool = False,
data_format: str = 'json',
) -> Dict[str, DataFrame]: ) -> Dict[str, DataFrame]:
""" """
Load ticker history data for a list of pairs. Load ticker history data for a list of pairs.
@ -184,17 +72,22 @@ def load_data(datadir: Path,
:param fill_up_missing: Fill missing values with "No action"-candles :param fill_up_missing: Fill missing values with "No action"-candles
:param startup_candles: Additional candles to load at the start of the period :param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found. :param fail_without_data: Raise OperationalException if no data is found.
:param data_format: Data format which should be used. Defaults to json
:return: dict(<pair>:<Dataframe>) :return: dict(<pair>:<Dataframe>)
""" """
result: Dict[str, DataFrame] = {} result: Dict[str, DataFrame] = {}
if startup_candles > 0 and timerange: if startup_candles > 0 and timerange:
logger.info(f'Using indicator startup period: {startup_candles} ...') logger.info(f'Using indicator startup period: {startup_candles} ...')
data_handler = get_datahandler(datadir, data_format)
for pair in pairs: for pair in pairs:
hist = load_pair_history(pair=pair, timeframe=timeframe, hist = load_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange, datadir=datadir, timerange=timerange,
fill_up_missing=fill_up_missing, fill_up_missing=fill_up_missing,
startup_candles=startup_candles) startup_candles=startup_candles,
data_handler=data_handler
)
if not hist.empty: if not hist.empty:
result[pair] = hist result[pair] = hist
@ -207,6 +100,7 @@ def refresh_data(datadir: Path,
timeframe: str, timeframe: str,
pairs: List[str], pairs: List[str],
exchange: Exchange, exchange: Exchange,
data_format: str = None,
timerange: Optional[TimeRange] = None, timerange: Optional[TimeRange] = None,
) -> None: ) -> None:
""" """
@ -218,70 +112,50 @@ def refresh_data(datadir: Path,
:param exchange: Exchange object :param exchange: Exchange object
:param timerange: Limit data to be loaded to this timerange :param timerange: Limit data to be loaded to this timerange
""" """
data_handler = get_datahandler(datadir, data_format)
for pair in pairs: for pair in pairs:
_download_pair_history(pair=pair, timeframe=timeframe, _download_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange, datadir=datadir, timerange=timerange,
exchange=exchange) exchange=exchange, data_handler=data_handler)
def pair_data_filename(datadir: Path, pair: str, timeframe: str) -> Path: def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
pair_s = pair.replace("/", "_") data_handler: IDataHandler) -> Tuple[DataFrame, Optional[int]]:
filename = datadir.joinpath(f'{pair_s}-{timeframe}.json')
return filename
def pair_trades_filename(datadir: Path, pair: str) -> Path:
pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-trades.json.gz')
return filename
def _load_cached_data_for_updating(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange]) -> Tuple[List[Any],
Optional[int]]:
""" """
Load cached data to download more data. Load cached data to download more data.
If timerange is passed in, checks whether data from an before the stored data will be If timerange is passed in, checks whether data from an before the stored data will be
downloaded. downloaded.
If that's the case then what's available should be completely overwritten. If that's the case then what's available should be completely overwritten.
Only used by download_pair_history(). Otherwise downloads always start at the end of the available data to avoid data gaps.
Note: Only used by download_pair_history().
""" """
start = None
since_ms = None
# user sets timerange, so find the start time
if timerange: if timerange:
if timerange.starttype == 'date': if timerange.starttype == 'date':
since_ms = timerange.startts * 1000 # TODO: convert to date for conversion
elif timerange.stoptype == 'line': start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
num_minutes = timerange.stopts * timeframe_to_minutes(timeframe)
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# read the cached file
# Intentionally don't pass timerange in - since we need to load the full dataset. # Intentionally don't pass timerange in - since we need to load the full dataset.
data = load_tickerdata_file(datadir, pair, timeframe) data = data_handler.ohlcv_load(pair, timeframe=timeframe,
# remove the last item, could be incomplete candle timerange=None, fill_missing=False,
if data: drop_incomplete=True, warn_no_data=False)
data.pop() if not data.empty:
else: if start and start < data.iloc[0]['date']:
data = []
if data:
if since_ms and since_ms < data[0][0]:
# Earlier data than existing data requested, redownload all # Earlier data than existing data requested, redownload all
data = [] data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
else: else:
# a part of the data was already downloaded, so download unexist data only start = data.iloc[-1]['date']
since_ms = data[-1][0] + 1
return (data, since_ms) start_ms = int(start.timestamp() * 1000) if start else None
return data, start_ms
def _download_pair_history(datadir: Path, def _download_pair_history(datadir: Path,
exchange: Exchange, exchange: Exchange,
pair: str, pair: str, *,
timeframe: str = '5m', timeframe: str = '5m',
timerange: Optional[TimeRange] = None) -> bool: timerange: Optional[TimeRange] = None,
data_handler: IDataHandler = None) -> bool:
""" """
Download latest candles from the exchange for the pair and timeframe passed in parameters Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that The data is downloaded starting from the last correct data that
@ -295,16 +169,22 @@ def _download_pair_history(datadir: Path,
:param timerange: range of time to download :param timerange: range of time to download
:return: bool with success state :return: bool with success state
""" """
data_handler = get_datahandler(datadir, data_handler=data_handler)
try: try:
logger.info( logger.info(
f'Download history data for pair: "{pair}", timeframe: {timeframe} ' f'Download history data for pair: "{pair}", timeframe: {timeframe} '
f'and store in {datadir}.' f'and store in {datadir}.'
) )
data, since_ms = _load_cached_data_for_updating(datadir, pair, timeframe, timerange) # data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
data_handler=data_handler)
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None') logger.debug("Current Start: %s",
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None') f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("Current End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
# Default since_ms to 30 days if nothing is given # Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair, new_data = exchange.get_historic_ohlcv(pair=pair,
@ -313,12 +193,20 @@ def _download_pair_history(datadir: Path,
int(arrow.utcnow().shift( int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000 days=-30).float_timestamp) * 1000
) )
data.extend(new_data) # TODO: Maybe move parsing to exchange class (?)
new_dataframe = parse_ticker_dataframe(new_data, timeframe, pair,
fill_missing=False, drop_incomplete=True)
if data.empty:
data = new_dataframe
else:
data = data.append(new_dataframe)
logger.debug("New Start: %s", misc.format_ms_time(data[0][0])) logger.debug("New Start: %s",
logger.debug("New End: %s", misc.format_ms_time(data[-1][0])) f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
store_tickerdata_file(datadir, pair, timeframe, data=data) data_handler.ohlcv_store(pair, timeframe, data=data)
return True return True
except Exception as e: except Exception as e:
@ -331,13 +219,14 @@ def _download_pair_history(datadir: Path,
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str], def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
datadir: Path, timerange: Optional[TimeRange] = None, datadir: Path, timerange: Optional[TimeRange] = None,
erase=False) -> List[str]: erase: bool = False, data_format: str = None) -> List[str]:
""" """
Refresh stored ohlcv data for backtesting and hyperopt operations. Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand. Used by freqtrade download-data subcommand.
:return: List of pairs that are not available. :return: List of pairs that are not available.
""" """
pairs_not_available = [] pairs_not_available = []
data_handler = get_datahandler(datadir, data_format)
for pair in pairs: for pair in pairs:
if pair not in exchange.markets: if pair not in exchange.markets:
pairs_not_available.append(pair) pairs_not_available.append(pair)
@ -345,23 +234,23 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
continue continue
for timeframe in timeframes: for timeframe in timeframes:
dl_file = pair_data_filename(datadir, pair, timeframe) if erase:
if erase and dl_file.exists(): if data_handler.ohlcv_purge(pair, timeframe):
logger.info( logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.') f'Deleting existing data for pair {pair}, interval {timeframe}.')
dl_file.unlink()
logger.info(f'Downloading pair {pair}, interval {timeframe}.') logger.info(f'Downloading pair {pair}, interval {timeframe}.')
_download_pair_history(datadir=datadir, exchange=exchange, _download_pair_history(datadir=datadir, exchange=exchange,
pair=pair, timeframe=str(timeframe), pair=pair, timeframe=str(timeframe),
timerange=timerange) timerange=timerange, data_handler=data_handler)
return pairs_not_available return pairs_not_available
def _download_trades_history(datadir: Path, def _download_trades_history(exchange: Exchange,
exchange: Exchange, pair: str, *,
pair: str, timerange: Optional[TimeRange] = None,
timerange: Optional[TimeRange] = None) -> bool: data_handler: IDataHandler
) -> bool:
""" """
Download trade history from the exchange. Download trade history from the exchange.
Appends to previously downloaded trades data. Appends to previously downloaded trades data.
@ -370,7 +259,7 @@ def _download_trades_history(datadir: Path,
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
trades = load_trades_file(datadir, pair) trades = data_handler.trades_load(pair)
from_id = trades[-1]['id'] if trades else None from_id = trades[-1]['id'] if trades else None
@ -385,7 +274,7 @@ def _download_trades_history(datadir: Path,
from_id=from_id, from_id=from_id,
) )
trades.extend(new_trades[1]) trades.extend(new_trades[1])
store_trades_file(datadir, pair, trades) data_handler.trades_store(pair, data=trades)
logger.debug("New Start: %s", trades[0]['datetime']) logger.debug("New Start: %s", trades[0]['datetime'])
logger.debug("New End: %s", trades[-1]['datetime']) logger.debug("New End: %s", trades[-1]['datetime'])
@ -401,47 +290,52 @@ def _download_trades_history(datadir: Path,
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path, def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
timerange: TimeRange, erase=False) -> List[str]: timerange: TimeRange, erase: bool = False,
data_format: str = 'jsongz') -> List[str]:
""" """
Refresh stored trades data for backtesting and hyperopt operations. Refresh stored trades data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand. Used by freqtrade download-data subcommand.
:return: List of pairs that are not available. :return: List of pairs that are not available.
""" """
pairs_not_available = [] pairs_not_available = []
data_handler = get_datahandler(datadir, data_format=data_format)
for pair in pairs: for pair in pairs:
if pair not in exchange.markets: if pair not in exchange.markets:
pairs_not_available.append(pair) pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...") logger.info(f"Skipping pair {pair}...")
continue continue
dl_file = pair_trades_filename(datadir, pair) if erase:
if erase and dl_file.exists(): if data_handler.trades_purge(pair):
logger.info( logger.info(f'Deleting existing data for pair {pair}.')
f'Deleting existing data for pair {pair}.')
dl_file.unlink()
logger.info(f'Downloading trades for pair {pair}.') logger.info(f'Downloading trades for pair {pair}.')
_download_trades_history(datadir=datadir, exchange=exchange, _download_trades_history(exchange=exchange,
pair=pair, pair=pair,
timerange=timerange) timerange=timerange,
data_handler=data_handler)
return pairs_not_available return pairs_not_available
def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str], def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
datadir: Path, timerange: TimeRange, erase=False) -> None: datadir: Path, timerange: TimeRange, erase: bool = False,
data_format_ohlcv: str = 'json',
data_format_trades: str = 'jsongz') -> None:
""" """
Convert stored trades data to ohlcv data Convert stored trades data to ohlcv data
""" """
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
for pair in pairs: for pair in pairs:
trades = load_trades_file(datadir, pair) trades = data_handler_trades.trades_load(pair)
for timeframe in timeframes: for timeframe in timeframes:
ohlcv_file = pair_data_filename(datadir, pair, timeframe) if erase:
if erase and ohlcv_file.exists(): if data_handler_ohlcv.ohlcv_purge(pair, timeframe):
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.') logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
ohlcv_file.unlink()
ohlcv = trades_to_ohlcv(trades, timeframe) ohlcv = trades_to_ohlcv(trades, timeframe)
# Store ohlcv # Store ohlcv
store_tickerdata_file(datadir, pair, timeframe, data=ohlcv) data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv)
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]: def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:

View File

@ -0,0 +1,220 @@
"""
Abstract datahandler interface.
It's subclasses handle and storing data from disk.
"""
import logging
from abc import ABC, abstractclassmethod, abstractmethod
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, List, Optional, Type
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.converter import clean_ohlcv_dataframe, trim_dataframe
from freqtrade.exchange import timeframe_to_seconds
logger = logging.getLogger(__name__)
class IDataHandler(ABC):
def __init__(self, datadir: Path) -> None:
self._datadir = datadir
@abstractclassmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
@abstractmethod
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
@abstractmethod
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
@abstractmethod
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
@abstractmethod
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
@abstractclassmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
@abstractmethod
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
@abstractmethod
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
def ohlcv_load(self, pair, timeframe: str,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
warn_no_data: bool = True
) -> DataFrame:
"""
Load cached ticker history for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange
:param fill_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param warn_no_data: Log a warning message when no data is found
:return: DataFrame with ohlcv data, or empty DataFrame
"""
# Fix startup period
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdf = self._ohlcv_load(pair, timeframe,
timerange=timerange_startup)
if pairdf.empty:
if warn_no_data:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
if timerange_startup:
self._validate_pairdata(pair, pairdf, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
# incomplete candles should only be dropped if we didn't trim the end beforehand.
return clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
def _validate_pairdata(self, pair, pairdata: DataFrame, timerange: TimeRange):
"""
Validates pairdata for missing data at start end end and logs warnings.
:param pairdata: Dataframe to validate
:param timerange: Timerange specified for start and end dates
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if pairdata.iloc[0]['date'] > start:
logger.warning(f"Missing data at start for pair {pair}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
if pairdata.iloc[-1]['date'] < stop:
logger.warning(f"Missing data at end for pair {pair}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
"""
Get datahandler class.
Could be done using Resolvers, but since this may be called often and resolvers
are rather expensive, doing this directly should improve performance.
:param datatype: datatype to use.
:return: Datahandler class
"""
if datatype == 'json':
from .jsondatahandler import JsonDataHandler
return JsonDataHandler
elif datatype == 'jsongz':
from .jsondatahandler import JsonGzDataHandler
return JsonGzDataHandler
else:
raise ValueError(f"No datahandler for datatype {datatype} available.")
def get_datahandler(datadir: Path, data_format: str = None,
data_handler: IDataHandler = None) -> IDataHandler:
"""
:param datadir: Folder to save data
:data_format: dataformat to use
:data_handler: returns this datahandler if it exists or initializes a new one
"""
if not data_handler:
HandlerClass = get_datahandlerclass(data_format or 'json')
data_handler = HandlerClass(datadir)
return data_handler

View File

@ -0,0 +1,179 @@
import re
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
from pandas import DataFrame, read_json, to_datetime
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from .idatahandler import IDataHandler
class JsonDataHandler(IDataHandler):
_use_zip = False
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + '.json)', p.name)
for p in datadir.glob(f"*{timeframe}.{cls._get_file_extension()}")]
# Check if regex found something and only return these results
return [match[0].replace('_', '/') for match in _tmp if match]
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
_data = data.copy()
# Convert date to int
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
# Reset index, select only appropriate columns and save as json
_data.reset_index(drop=True).loc[:, self._columns].to_json(
filename, orient="values",
compression='gzip' if self._use_zip else None)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if not filename.exists():
return DataFrame(columns=self._columns)
pairdata = read_json(filename, orient='values')
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return pairdata
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if filename.exists():
filename.unlink()
return True
return False
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
raise NotImplementedError()
@classmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-trades.json)', p.name)
for p in datadir.glob(f"*trades.{cls._get_file_extension()}")]
# Check if regex found something and only return these results to avoid exceptions.
return [match[0].replace('_', '/') for match in _tmp if match]
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
filename = self._pair_trades_filename(self._datadir, pair)
misc.file_dump_json(filename, data, is_zip=self._use_zip)
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
raise NotImplementedError()
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
# TODO: respect timerange ...
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
filename = self._pair_trades_filename(self._datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_trades_filename(self._datadir, pair)
if filename.exists():
filename.unlink()
return True
return False
@classmethod
def _pair_data_filename(cls, datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-{timeframe}.{cls._get_file_extension()}')
return filename
@classmethod
def _get_file_extension(cls):
return "json.gz" if cls._use_zip else "json"
@classmethod
def _pair_trades_filename(cls, datadir: Path, pair: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
return filename
class JsonGzDataHandler(JsonDataHandler):
_use_zip = True

View File

@ -1,7 +1,7 @@
# pragma pylint: disable=W0603 # pragma pylint: disable=W0603
""" Edge positioning package """ """ Edge positioning package """
import logging import logging
from typing import Any, Dict, NamedTuple from typing import Any, Dict, List, NamedTuple
import arrow import arrow
import numpy as np import numpy as np
@ -110,6 +110,7 @@ class Edge:
timeframe=self.strategy.ticker_interval, timeframe=self.strategy.ticker_interval,
timerange=self._timerange, timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count, startup_candles=self.strategy.startup_candle_count,
data_format=self.config.get('dataformat_ohlcv', 'json'),
) )
if not data: if not data:
@ -181,7 +182,7 @@ class Edge:
'strategy stoploss is returned instead.') 'strategy stoploss is returned instead.')
return self.strategy.stoploss return self.strategy.stoploss
def adjust(self, pairs) -> list: def adjust(self, pairs: List[str]) -> list:
""" """
Filters out and sorts "pairs" according to Edge calculated pairs Filters out and sorts "pairs" according to Edge calculated pairs
""" """

View File

@ -1,18 +1,20 @@
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS # noqa: F401 # flake8: noqa: F401
from freqtrade.exchange.exchange import Exchange # noqa: F401 from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import (get_exchange_bad_reason, # noqa: F401 from freqtrade.exchange.exchange import Exchange
from freqtrade.exchange.exchange import (get_exchange_bad_reason,
is_exchange_bad, is_exchange_bad,
is_exchange_known_ccxt, is_exchange_known_ccxt,
is_exchange_officially_supported, is_exchange_officially_supported,
ccxt_exchanges, ccxt_exchanges,
available_exchanges) available_exchanges)
from freqtrade.exchange.exchange import (timeframe_to_seconds, # noqa: F401 from freqtrade.exchange.exchange import (timeframe_to_seconds,
timeframe_to_minutes, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_next_date,
timeframe_to_prev_date) timeframe_to_prev_date)
from freqtrade.exchange.exchange import (market_is_active, # noqa: F401 from freqtrade.exchange.exchange import (market_is_active,
symbol_is_pair) symbol_is_pair)
from freqtrade.exchange.kraken import Kraken # noqa: F401 from freqtrade.exchange.kraken import Kraken
from freqtrade.exchange.binance import Binance # noqa: F401 from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bibox import Bibox # noqa: F401 from freqtrade.exchange.bibox import Bibox
from freqtrade.exchange.ftx import Ftx

View File

@ -32,13 +32,23 @@ class Binance(Exchange):
return super().get_order_book(pair, limit) return super().get_order_book(pair, limit)
def stoploss_limit(self, pair: str, amount: float, stop_price: float, rate: float) -> Dict: def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return order['type'] == 'stop_loss_limit' and stop_loss > float(order['info']['stopPrice'])
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
""" """
creates a stoploss limit order. creates a stoploss limit order.
this stoploss-limit is binance-specific. this stoploss-limit is binance-specific.
It may work with a limited number of other exchanges, but this has not been tested yet. It may work with a limited number of other exchanges, but this has not been tested yet.
""" """
# Limit price threshold: As limit price should always be below stop-price
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
rate = stop_price * limit_price_pct
ordertype = "stop_loss_limit" ordertype = "stop_loss_limit"
stop_price = self.price_to_precision(pair, stop_price) stop_price = self.price_to_precision(pair, stop_price)
@ -61,8 +71,8 @@ class Binance(Exchange):
rate = self.price_to_precision(pair, rate) rate = self.price_to_precision(pair, rate)
order = self._api.create_order(pair, ordertype, 'sell', order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
amount, rate, params) amount=amount, price=stop_price, params=params)
logger.info('stoploss limit order added for %s. ' logger.info('stoploss limit order added for %s. '
'stop price: %s. limit: %s', pair, stop_price, rate) 'stop price: %s. limit: %s', pair, stop_price, rate)
return order return order

View File

@ -24,6 +24,10 @@ from freqtrade.exceptions import (DependencyException, InvalidOrderException,
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
from freqtrade.misc import deep_merge_dicts from freqtrade.misc import deep_merge_dicts
CcxtModuleType = Any
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -51,7 +55,7 @@ class Exchange:
} }
_ft_has: Dict = {} _ft_has: Dict = {}
def __init__(self, config: dict, validate: bool = True) -> None: def __init__(self, config: Dict[str, Any], validate: bool = True) -> None:
""" """
Initializes this module with the given config, Initializes this module with the given config,
it does basic validation whether the specified exchange and pairs are valid. it does basic validation whether the specified exchange and pairs are valid.
@ -62,8 +66,6 @@ class Exchange:
self._config.update(config) self._config.update(config)
self._cached_ticker: Dict[str, Any] = {}
# Holds last candle refreshed time of each pair # Holds last candle refreshed time of each pair
self._pairs_last_refresh_time: Dict[Tuple[str, str], int] = {} self._pairs_last_refresh_time: Dict[Tuple[str, str], int] = {}
# Timestamp of last markets refresh # Timestamp of last markets refresh
@ -135,7 +137,7 @@ class Exchange:
if self._api_async and inspect.iscoroutinefunction(self._api_async.close): if self._api_async and inspect.iscoroutinefunction(self._api_async.close):
asyncio.get_event_loop().run_until_complete(self._api_async.close()) asyncio.get_event_loop().run_until_complete(self._api_async.close())
def _init_ccxt(self, exchange_config: dict, ccxt_module=ccxt, def _init_ccxt(self, exchange_config: Dict[str, Any], ccxt_module: CcxtModuleType = ccxt,
ccxt_kwargs: dict = None) -> ccxt.Exchange: ccxt_kwargs: dict = None) -> ccxt.Exchange:
""" """
Initialize ccxt with given config and return valid Initialize ccxt with given config and return valid
@ -224,13 +226,13 @@ class Exchange:
markets = self.markets markets = self.markets
return sorted(set([x['quote'] for _, x in markets.items()])) return sorted(set([x['quote'] for _, x in markets.items()]))
def klines(self, pair_interval: Tuple[str, str], copy=True) -> DataFrame: def klines(self, pair_interval: Tuple[str, str], copy: bool = True) -> DataFrame:
if pair_interval in self._klines: if pair_interval in self._klines:
return self._klines[pair_interval].copy() if copy else self._klines[pair_interval] return self._klines[pair_interval].copy() if copy else self._klines[pair_interval]
else: else:
return DataFrame() return DataFrame()
def set_sandbox(self, api, exchange_config: dict, name: str): def set_sandbox(self, api: ccxt.Exchange, exchange_config: dict, name: str) -> None:
if exchange_config.get('sandbox'): if exchange_config.get('sandbox'):
if api.urls.get('test'): if api.urls.get('test'):
api.urls['api'] = api.urls['test'] api.urls['api'] = api.urls['test']
@ -240,7 +242,7 @@ class Exchange:
"Please check your config.json") "Please check your config.json")
raise OperationalException(f'Exchange {name} does not provide a sandbox api') raise OperationalException(f'Exchange {name} does not provide a sandbox api')
def _load_async_markets(self, reload=False) -> None: def _load_async_markets(self, reload: bool = False) -> None:
try: try:
if self._api_async: if self._api_async:
asyncio.get_event_loop().run_until_complete( asyncio.get_event_loop().run_until_complete(
@ -273,7 +275,7 @@ class Exchange:
except ccxt.BaseError: except ccxt.BaseError:
logger.exception("Could not reload markets.") logger.exception("Could not reload markets.")
def validate_stakecurrency(self, stake_currency) -> None: def validate_stakecurrency(self, stake_currency: str) -> None:
""" """
Checks stake-currency against available currencies on the exchange. Checks stake-currency against available currencies on the exchange.
:param stake_currency: Stake-currency to validate :param stake_currency: Stake-currency to validate
@ -282,8 +284,8 @@ class Exchange:
quote_currencies = self.get_quote_currencies() quote_currencies = self.get_quote_currencies()
if stake_currency not in quote_currencies: if stake_currency not in quote_currencies:
raise OperationalException( raise OperationalException(
f"{stake_currency} is not available as stake on {self.name}. " f"{stake_currency} is not available as stake on {self.name}. "
f"Available currencies are: {', '.join(quote_currencies)}") f"Available currencies are: {', '.join(quote_currencies)}")
def validate_pairs(self, pairs: List[str]) -> None: def validate_pairs(self, pairs: List[str]) -> None:
""" """
@ -319,7 +321,7 @@ class Exchange:
f"Please check if you are impacted by this restriction " f"Please check if you are impacted by this restriction "
f"on the exchange and eventually remove {pair} from your whitelist.") f"on the exchange and eventually remove {pair} from your whitelist.")
def get_valid_pair_combination(self, curr_1, curr_2) -> str: def get_valid_pair_combination(self, curr_1: str, curr_2: str) -> str:
""" """
Get valid pair combination of curr_1 and curr_2 by trying both combinations. Get valid pair combination of curr_1 and curr_2 by trying both combinations.
""" """
@ -373,7 +375,7 @@ class Exchange:
raise OperationalException( raise OperationalException(
f'Time in force policies are not supported for {self.name} yet.') f'Time in force policies are not supported for {self.name} yet.')
def validate_required_startup_candles(self, startup_candles) -> None: def validate_required_startup_candles(self, startup_candles: int) -> None:
""" """
Checks if required startup_candles is more than ohlcv_candle_limit. Checks if required startup_candles is more than ohlcv_candle_limit.
Requires a grace-period of 5 candles - so a startup-period up to 494 is allowed by default. Requires a grace-period of 5 candles - so a startup-period up to 494 is allowed by default.
@ -392,7 +394,7 @@ class Exchange:
""" """
return endpoint in self._api.has and self._api.has[endpoint] return endpoint in self._api.has and self._api.has[endpoint]
def amount_to_precision(self, pair, amount: float) -> float: def amount_to_precision(self, pair: str, amount: float) -> float:
''' '''
Returns the amount to buy or sell to a precision the Exchange accepts Returns the amount to buy or sell to a precision the Exchange accepts
Reimplementation of ccxt internal methods - ensuring we can test the result is correct Reimplementation of ccxt internal methods - ensuring we can test the result is correct
@ -406,7 +408,7 @@ class Exchange:
return amount return amount
def price_to_precision(self, pair, price: float) -> float: def price_to_precision(self, pair: str, price: float) -> float:
''' '''
Returns the price rounded up to the precision the Exchange accepts. Returns the price rounded up to the precision the Exchange accepts.
Partial Reimplementation of ccxt internal method decimal_to_precision(), Partial Reimplementation of ccxt internal method decimal_to_precision(),
@ -460,7 +462,7 @@ class Exchange:
"status": "closed", "status": "closed",
"filled": closed_order["amount"], "filled": closed_order["amount"],
"remaining": 0 "remaining": 0
}) })
if closed_order["type"] in ["stop_loss_limit"]: if closed_order["type"] in ["stop_loss_limit"]:
closed_order["info"].update({"stopPrice": closed_order["price"]}) closed_order["info"].update({"stopPrice": closed_order["price"]})
self._dry_run_open_orders[closed_order["id"]] = closed_order self._dry_run_open_orders[closed_order["id"]] = closed_order
@ -494,7 +496,7 @@ class Exchange:
raise OperationalException(e) from e raise OperationalException(e) from e
def buy(self, pair: str, ordertype: str, amount: float, def buy(self, pair: str, ordertype: str, amount: float,
rate: float, time_in_force) -> Dict: rate: float, time_in_force: str) -> Dict:
if self._config['dry_run']: if self._config['dry_run']:
dry_order = self.dry_run_order(pair, ordertype, "buy", amount, rate) dry_order = self.dry_run_order(pair, ordertype, "buy", amount, rate)
@ -507,7 +509,7 @@ class Exchange:
return self.create_order(pair, ordertype, 'buy', amount, rate, params) return self.create_order(pair, ordertype, 'buy', amount, rate, params)
def sell(self, pair: str, ordertype: str, amount: float, def sell(self, pair: str, ordertype: str, amount: float,
rate: float, time_in_force='gtc') -> Dict: rate: float, time_in_force: str = 'gtc') -> Dict:
if self._config['dry_run']: if self._config['dry_run']:
dry_order = self.dry_run_order(pair, ordertype, "sell", amount, rate) dry_order = self.dry_run_order(pair, ordertype, "sell", amount, rate)
@ -519,9 +521,17 @@ class Exchange:
return self.create_order(pair, ordertype, 'sell', amount, rate, params) return self.create_order(pair, ordertype, 'sell', amount, rate, params)
def stoploss_limit(self, pair: str, amount: float, stop_price: float, rate: float) -> Dict: def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
""" """
creates a stoploss limit order. Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
raise OperationalException(f"stoploss is not implemented for {self.name}.")
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
"""
creates a stoploss order.
The precise ordertype is determined by the order_types dict or exchange default.
Since ccxt does not unify stoploss-limit orders yet, this needs to be implemented in each Since ccxt does not unify stoploss-limit orders yet, this needs to be implemented in each
exchange's subclass. exchange's subclass.
The exception below should never raise, since we disallow The exception below should never raise, since we disallow
@ -529,7 +539,7 @@ class Exchange:
Note: Changes to this interface need to be applied to all sub-classes too. Note: Changes to this interface need to be applied to all sub-classes too.
""" """
raise OperationalException(f"stoploss_limit is not implemented for {self.name}.") raise OperationalException(f"stoploss is not implemented for {self.name}.")
@retrier @retrier
def get_balance(self, currency: str) -> float: def get_balance(self, currency: str) -> float:
@ -579,28 +589,17 @@ class Exchange:
raise OperationalException(e) from e raise OperationalException(e) from e
@retrier @retrier
def fetch_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict: def fetch_ticker(self, pair: str) -> dict:
if refresh or pair not in self._cached_ticker.keys(): try:
try: if pair not in self._api.markets or not self._api.markets[pair].get('active'):
if pair not in self._api.markets or not self._api.markets[pair].get('active'): raise DependencyException(f"Pair {pair} not available")
raise DependencyException(f"Pair {pair} not available") data = self._api.fetch_ticker(pair)
data = self._api.fetch_ticker(pair) return data
try: except (ccxt.NetworkError, ccxt.ExchangeError) as e:
self._cached_ticker[pair] = { raise TemporaryError(
'bid': float(data['bid']), f'Could not load ticker due to {e.__class__.__name__}. Message: {e}') from e
'ask': float(data['ask']), except ccxt.BaseError as e:
} raise OperationalException(e) from e
except KeyError:
logger.debug("Could not cache ticker data for %s", pair)
return data
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load ticker due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
else:
logger.info("returning cached ticker-data for %s", pair)
return self._cached_ticker[pair]
def get_historic_ohlcv(self, pair: str, timeframe: str, def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int) -> List: since_ms: int) -> List:
@ -728,10 +727,11 @@ class Exchange:
f'Exchange {self._api.name} does not support fetching historical candlestick data.' f'Exchange {self._api.name} does not support fetching historical candlestick data.'
f'Message: {e}') from e f'Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e: except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(f'Could not load ticker history due to {e.__class__.__name__}. ' raise TemporaryError(f'Could not load ticker history for pair {pair} due to '
f'Message: {e}') from e f'{e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e: except ccxt.BaseError as e:
raise OperationalException(f'Could not fetch ticker data. Msg: {e}') from e raise OperationalException(f'Could not fetch ticker data for pair {pair}. '
f'Msg: {e}') from e
@retrier_async @retrier_async
async def _async_fetch_trades(self, pair: str, async def _async_fetch_trades(self, pair: str,
@ -976,8 +976,8 @@ class Exchange:
raise OperationalException(e) from e raise OperationalException(e) from e
@retrier @retrier
def get_fee(self, symbol, type='', side='', amount=1, def get_fee(self, symbol: str, type: str = '', side: str = '', amount: float = 1,
price=1, taker_or_maker='maker') -> float: price: float = 1, taker_or_maker: str = 'maker') -> float:
try: try:
# validate that markets are loaded before trying to get fee # validate that markets are loaded before trying to get fee
if self._api.markets is None or len(self._api.markets) == 0: if self._api.markets is None or len(self._api.markets) == 0:
@ -1000,7 +1000,7 @@ def get_exchange_bad_reason(exchange_name: str) -> str:
return BAD_EXCHANGES.get(exchange_name, "") return BAD_EXCHANGES.get(exchange_name, "")
def is_exchange_known_ccxt(exchange_name: str, ccxt_module=None) -> bool: def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = None) -> bool:
return exchange_name in ccxt_exchanges(ccxt_module) return exchange_name in ccxt_exchanges(ccxt_module)
@ -1008,14 +1008,14 @@ def is_exchange_officially_supported(exchange_name: str) -> bool:
return exchange_name in ['bittrex', 'binance'] return exchange_name in ['bittrex', 'binance']
def ccxt_exchanges(ccxt_module=None) -> List[str]: def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
""" """
Return the list of all exchanges known to ccxt Return the list of all exchanges known to ccxt
""" """
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
def available_exchanges(ccxt_module=None) -> List[str]: def available_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
""" """
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
""" """
@ -1075,7 +1075,8 @@ def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc) return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def symbol_is_pair(market_symbol: str, base_currency: str = None, quote_currency: str = None): def symbol_is_pair(market_symbol: str, base_currency: str = None,
quote_currency: str = None) -> bool:
""" """
Check if the market symbol is a pair, i.e. that its symbol consists of the base currency and the Check if the market symbol is a pair, i.e. that its symbol consists of the base currency and the
quote currency separated by '/' character. If base_currency and/or quote_currency is passed, quote currency separated by '/' character. If base_currency and/or quote_currency is passed,
@ -1088,7 +1089,7 @@ def symbol_is_pair(market_symbol: str, base_currency: str = None, quote_currency
(symbol_parts[1] == quote_currency if quote_currency else len(symbol_parts[1]) > 0)) (symbol_parts[1] == quote_currency if quote_currency else len(symbol_parts[1]) > 0))
def market_is_active(market): def market_is_active(market: Dict) -> bool:
""" """
Return True if the market is active. Return True if the market is active.
""" """

14
freqtrade/exchange/ftx.py Normal file
View File

@ -0,0 +1,14 @@
""" FTX exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Ftx(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1500,
}

View File

@ -4,7 +4,8 @@ from typing import Dict
import ccxt import ccxt
from freqtrade.exceptions import OperationalException, TemporaryError from freqtrade.exceptions import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange from freqtrade.exchange import Exchange
from freqtrade.exchange.exchange import retrier from freqtrade.exchange.exchange import retrier
@ -15,6 +16,7 @@ class Kraken(Exchange):
_params: Dict = {"trading_agreement": "agree"} _params: Dict = {"trading_agreement": "agree"}
_ft_has: Dict = { _ft_has: Dict = {
"stoploss_on_exchange": True,
"trades_pagination": "id", "trades_pagination": "id",
"trades_pagination_arg": "since", "trades_pagination_arg": "since",
} }
@ -48,3 +50,51 @@ class Kraken(Exchange):
f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e: except ccxt.BaseError as e:
raise OperationalException(e) from e raise OperationalException(e) from e
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return order['type'] == 'stop-loss' and stop_loss > float(order['price'])
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
"""
Creates a stoploss market order.
Stoploss market orders is the only stoploss type supported by kraken.
"""
ordertype = "stop-loss"
stop_price = self.price_to_precision(pair, stop_price)
if self._config['dry_run']:
dry_order = self.dry_run_order(
pair, ordertype, "sell", amount, stop_price)
return dry_order
try:
params = self._params.copy()
amount = self.amount_to_precision(pair, amount)
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
amount=amount, price=stop_price, params=params)
logger.info('stoploss order added for %s. '
'stop price: %s.', pair, stop_price)
return order
except ccxt.InsufficientFunds as e:
raise DependencyException(
f'Insufficient funds to create {ordertype} sell order on market {pair}.'
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not create {ordertype} sell order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e

View File

@ -6,11 +6,11 @@ import logging
import traceback import traceback
from datetime import datetime from datetime import datetime
from math import isclose from math import isclose
from os import getpid
from threading import Lock from threading import Lock
from typing import Any, Dict, List, Optional, Tuple from typing import Any, Dict, List, Optional, Tuple
import arrow import arrow
from cachetools import TTLCache
from requests.exceptions import RequestException from requests.exceptions import RequestException
from freqtrade import __version__, constants, persistence from freqtrade import __version__, constants, persistence
@ -52,9 +52,8 @@ class FreqtradeBot:
# Init objects # Init objects
self.config = config self.config = config
self._heartbeat_msg = 0 self._sell_rate_cache = TTLCache(maxsize=100, ttl=5)
self._buy_rate_cache = TTLCache(maxsize=100, ttl=5)
self.heartbeat_interval = self.config.get('internals', {}).get('heartbeat_interval', 60)
self.strategy: IStrategy = StrategyResolver.load_strategy(self.config) self.strategy: IStrategy = StrategyResolver.load_strategy(self.config)
@ -159,11 +158,6 @@ class FreqtradeBot:
self.check_handle_timedout() self.check_handle_timedout()
Trade.session.flush() Trade.session.flush()
if (self.heartbeat_interval
and (arrow.utcnow().timestamp - self._heartbeat_msg > self.heartbeat_interval)):
logger.info(f"Bot heartbeat. PID={getpid()}")
self._heartbeat_msg = arrow.utcnow().timestamp
def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]: def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]:
""" """
Refresh whitelist from pairlist or edge and extend it with trades. Refresh whitelist from pairlist or edge and extend it with trades.
@ -234,11 +228,20 @@ class FreqtradeBot:
return trades_created return trades_created
def get_buy_rate(self, pair: str, tick: Dict = None) -> float: def get_buy_rate(self, pair: str, refresh: bool) -> float:
""" """
Calculates bid target between current ask price and last price Calculates bid target between current ask price and last price
:param pair: Pair to get rate for
:param refresh: allow cached data
:return: float: Price :return: float: Price
""" """
if not refresh:
rate = self._buy_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.info(f"Using cached buy rate for {pair}.")
return rate
config_bid_strategy = self.config.get('bid_strategy', {}) config_bid_strategy = self.config.get('bid_strategy', {})
if 'use_order_book' in config_bid_strategy and\ if 'use_order_book' in config_bid_strategy and\
config_bid_strategy.get('use_order_book', False): config_bid_strategy.get('use_order_book', False):
@ -251,11 +254,8 @@ class FreqtradeBot:
logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate) logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate)
used_rate = order_book_rate used_rate = order_book_rate
else: else:
if not tick: logger.info('Using Last Ask / Last Price')
logger.info('Using Last Ask / Last Price') ticker = self.exchange.fetch_ticker(pair)
ticker = self.exchange.fetch_ticker(pair)
else:
ticker = tick
if ticker['ask'] < ticker['last']: if ticker['ask'] < ticker['last']:
ticker_rate = ticker['ask'] ticker_rate = ticker['ask']
else: else:
@ -263,9 +263,11 @@ class FreqtradeBot:
ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask']) ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
used_rate = ticker_rate used_rate = ticker_rate
self._buy_rate_cache[pair] = used_rate
return used_rate return used_rate
def get_trade_stake_amount(self, pair) -> float: def get_trade_stake_amount(self, pair: str) -> float:
""" """
Calculate stake amount for the trade Calculate stake amount for the trade
:return: float: Stake amount :return: float: Stake amount
@ -404,7 +406,7 @@ class FreqtradeBot:
stake_amount = self.get_trade_stake_amount(pair) stake_amount = self.get_trade_stake_amount(pair)
if not stake_amount: if not stake_amount:
logger.debug("Stake amount is 0, ignoring possible trade for {pair}.") logger.debug(f"Stake amount is 0, ignoring possible trade for {pair}.")
return False return False
logger.info(f"Buy signal found: about create a new trade with stake_amount: " logger.info(f"Buy signal found: about create a new trade with stake_amount: "
@ -414,10 +416,12 @@ class FreqtradeBot:
if ((bid_check_dom.get('enabled', False)) and if ((bid_check_dom.get('enabled', False)) and
(bid_check_dom.get('bids_to_ask_delta', 0) > 0)): (bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
if self._check_depth_of_market_buy(pair, bid_check_dom): if self._check_depth_of_market_buy(pair, bid_check_dom):
logger.info(f'Executing Buy for {pair}.')
return self.execute_buy(pair, stake_amount) return self.execute_buy(pair, stake_amount)
else: else:
return False return False
logger.info(f'Executing Buy for {pair}')
return self.execute_buy(pair, stake_amount) return self.execute_buy(pair, stake_amount)
else: else:
return False return False
@ -427,23 +431,30 @@ class FreqtradeBot:
Checks depth of market before executing a buy Checks depth of market before executing a buy
""" """
conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0) conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0)
logger.info('checking depth of market for %s', pair) logger.info(f"Checking depth of market for {pair} ...")
order_book = self.exchange.get_order_book(pair, 1000) order_book = self.exchange.get_order_book(pair, 1000)
order_book_data_frame = order_book_to_dataframe(order_book['bids'], order_book['asks']) order_book_data_frame = order_book_to_dataframe(order_book['bids'], order_book['asks'])
order_book_bids = order_book_data_frame['b_size'].sum() order_book_bids = order_book_data_frame['b_size'].sum()
order_book_asks = order_book_data_frame['a_size'].sum() order_book_asks = order_book_data_frame['a_size'].sum()
bids_ask_delta = order_book_bids / order_book_asks bids_ask_delta = order_book_bids / order_book_asks
logger.info('bids: %s, asks: %s, delta: %s', order_book_bids, logger.info(
order_book_asks, bids_ask_delta) f"Bids: {order_book_bids}, Asks: {order_book_asks}, Delta: {bids_ask_delta}, "
f"Bid Price: {order_book['bids'][0][0]}, Ask Price: {order_book['asks'][0][0]}, "
f"Immediate Bid Quantity: {order_book['bids'][0][1]}, "
f"Immediate Ask Quantity: {order_book['asks'][0][1]}."
)
if bids_ask_delta >= conf_bids_to_ask_delta: if bids_ask_delta >= conf_bids_to_ask_delta:
logger.info(f"Bids to asks delta for {pair} DOES satisfy condition.")
return True return True
return False else:
logger.info(f"Bids to asks delta for {pair} does not satisfy condition.")
return False
def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None) -> bool: def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None) -> bool:
""" """
Executes a limit buy for the given pair Executes a limit buy for the given pair
:param pair: pair for which we want to create a LIMIT_BUY :param pair: pair for which we want to create a LIMIT_BUY
:return: None :return: True if a buy order is created, false if it fails.
""" """
time_in_force = self.strategy.order_time_in_force['buy'] time_in_force = self.strategy.order_time_in_force['buy']
@ -451,7 +462,7 @@ class FreqtradeBot:
buy_limit_requested = price buy_limit_requested = price
else: else:
# Calculate price # Calculate price
buy_limit_requested = self.get_buy_rate(pair) buy_limit_requested = self.get_buy_rate(pair, True)
min_stake_amount = self._get_min_pair_stake_amount(pair, buy_limit_requested) min_stake_amount = self._get_min_pair_stake_amount(pair, buy_limit_requested)
if min_stake_amount is not None and min_stake_amount > stake_amount: if min_stake_amount is not None and min_stake_amount > stake_amount:
@ -518,8 +529,6 @@ class FreqtradeBot:
ticker_interval=timeframe_to_minutes(self.config['ticker_interval']) ticker_interval=timeframe_to_minutes(self.config['ticker_interval'])
) )
self._notify_buy(trade, order_type)
# Update fees if order is closed # Update fees if order is closed
if order_status == 'closed': if order_status == 'closed':
self.update_trade_state(trade, order) self.update_trade_state(trade, order)
@ -530,9 +539,11 @@ class FreqtradeBot:
# Updating wallets # Updating wallets
self.wallets.update() self.wallets.update()
self._notify_buy(trade, order_type)
return True return True
def _notify_buy(self, trade: Trade, order_type: str): def _notify_buy(self, trade: Trade, order_type: str) -> None:
""" """
Sends rpc notification when a buy occured. Sends rpc notification when a buy occured.
""" """
@ -545,6 +556,32 @@ class FreqtradeBot:
'stake_amount': trade.stake_amount, 'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'], 'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None), 'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': trade.amount,
'open_date': trade.open_date or datetime.utcnow(),
'current_rate': trade.open_rate_requested,
}
# Send the message
self.rpc.send_msg(msg)
def _notify_buy_cancel(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a buy cancel occured.
"""
current_rate = self.get_buy_rate(trade.pair, False)
msg = {
'type': RPCMessageType.BUY_CANCEL_NOTIFICATION,
'exchange': self.exchange.name.capitalize(),
'pair': trade.pair,
'limit': trade.open_rate,
'order_type': order_type,
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': trade.amount,
'open_date': trade.open_date,
'current_rate': current_rate,
} }
# Send the message # Send the message
@ -586,8 +623,17 @@ class FreqtradeBot:
The orderbook portion is only used for rpc messaging, which would otherwise fail The orderbook portion is only used for rpc messaging, which would otherwise fail
for BitMex (has no bid/ask in fetch_ticker) for BitMex (has no bid/ask in fetch_ticker)
or remain static in any other case since it's not updating. or remain static in any other case since it's not updating.
:param pair: Pair to get rate for
:param refresh: allow cached data
:return: Bid rate :return: Bid rate
""" """
if not refresh:
rate = self._sell_rate_cache.get(pair)
# Check if cache has been invalidated
if rate:
logger.info(f"Using cached sell rate for {pair}.")
return rate
config_ask_strategy = self.config.get('ask_strategy', {}) config_ask_strategy = self.config.get('ask_strategy', {})
if config_ask_strategy.get('use_order_book', False): if config_ask_strategy.get('use_order_book', False):
logger.debug('Using order book to get sell rate') logger.debug('Using order book to get sell rate')
@ -596,7 +642,8 @@ class FreqtradeBot:
rate = order_book['bids'][0][0] rate = order_book['bids'][0][0]
else: else:
rate = self.exchange.fetch_ticker(pair, refresh)['bid'] rate = self.exchange.fetch_ticker(pair)['bid']
self._sell_rate_cache[pair] = rate
return rate return rate
def handle_trade(self, trade: Trade) -> bool: def handle_trade(self, trade: Trade) -> bool:
@ -620,7 +667,7 @@ class FreqtradeBot:
self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval)) self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval))
if config_ask_strategy.get('use_order_book', False): if config_ask_strategy.get('use_order_book', False):
logger.info('Using order book for selling...') logger.debug(f'Using order book for selling {trade.pair}...')
# logger.debug('Order book %s',orderBook) # logger.debug('Order book %s',orderBook)
order_book_min = config_ask_strategy.get('order_book_min', 1) order_book_min = config_ask_strategy.get('order_book_min', 1)
order_book_max = config_ask_strategy.get('order_book_max', 1) order_book_max = config_ask_strategy.get('order_book_max', 1)
@ -629,7 +676,7 @@ class FreqtradeBot:
for i in range(order_book_min, order_book_max + 1): for i in range(order_book_min, order_book_max + 1):
order_book_rate = order_book['asks'][i - 1][0] order_book_rate = order_book['asks'][i - 1][0]
logger.info(' order book asks top %s: %0.8f', i, order_book_rate) logger.debug(' order book asks top %s: %0.8f', i, order_book_rate)
sell_rate = order_book_rate sell_rate = order_book_rate
if self._check_and_execute_sell(trade, sell_rate, buy, sell): if self._check_and_execute_sell(trade, sell_rate, buy, sell):
@ -651,13 +698,10 @@ class FreqtradeBot:
Force-sells the pair (using EmergencySell reason) in case of Problems creating the order. Force-sells the pair (using EmergencySell reason) in case of Problems creating the order.
:return: True if the order succeeded, and False in case of problems. :return: True if the order succeeded, and False in case of problems.
""" """
# Limit price threshold: As limit price should always be below stop-price
LIMIT_PRICE_PCT = self.strategy.order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
try: try:
stoploss_order = self.exchange.stoploss_limit(pair=trade.pair, amount=trade.amount, stoploss_order = self.exchange.stoploss(pair=trade.pair, amount=trade.amount,
stop_price=stop_price, stop_price=stop_price,
rate=rate * LIMIT_PRICE_PCT) order_types=self.strategy.order_types)
trade.stoploss_order_id = str(stoploss_order['id']) trade.stoploss_order_id = str(stoploss_order['id'])
return True return True
except InvalidOrderException as e: except InvalidOrderException as e:
@ -689,8 +733,24 @@ class FreqtradeBot:
except InvalidOrderException as exception: except InvalidOrderException as exception:
logger.warning('Unable to fetch stoploss order: %s', exception) logger.warning('Unable to fetch stoploss order: %s', exception)
# We check if stoploss order is fulfilled
if stoploss_order and stoploss_order['status'] == 'closed':
trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
trade.update(stoploss_order)
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(trade.pair,
timeframe_to_next_date(self.config['ticker_interval']))
self._notify_sell(trade, "stoploss")
return True
if trade.open_order_id or not trade.is_open:
# Trade has an open Buy or Sell order, Stoploss-handling can't happen in this case
# as the Amount on the exchange is tied up in another trade.
# The trade can be closed already (sell-order fill confirmation came in this iteration)
return False
# If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange # If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange
if (not trade.open_order_id and not stoploss_order): if (not stoploss_order):
stoploss = self.edge.stoploss(pair=trade.pair) if self.edge else self.strategy.stoploss stoploss = self.edge.stoploss(pair=trade.pair) if self.edge else self.strategy.stoploss
@ -709,16 +769,6 @@ class FreqtradeBot:
trade.stoploss_order_id = None trade.stoploss_order_id = None
logger.warning('Stoploss order was cancelled, but unable to recreate one.') logger.warning('Stoploss order was cancelled, but unable to recreate one.')
# We check if stoploss order is fulfilled
if stoploss_order and stoploss_order['status'] == 'closed':
trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
trade.update(stoploss_order)
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(trade.pair,
timeframe_to_next_date(self.config['ticker_interval']))
self._notify_sell(trade, "stoploss")
return True
# Finally we check if stoploss on exchange should be moved up because of trailing. # Finally we check if stoploss on exchange should be moved up because of trailing.
if stoploss_order and self.config.get('trailing_stop', False): if stoploss_order and self.config.get('trailing_stop', False):
# if trailing stoploss is enabled we check if stoploss value has changed # if trailing stoploss is enabled we check if stoploss value has changed
@ -728,7 +778,7 @@ class FreqtradeBot:
return False return False
def handle_trailing_stoploss_on_exchange(self, trade: Trade, order): def handle_trailing_stoploss_on_exchange(self, trade: Trade, order: dict) -> None:
""" """
Check to see if stoploss on exchange should be updated Check to see if stoploss on exchange should be updated
in case of trailing stoploss on exchange in case of trailing stoploss on exchange
@ -736,13 +786,12 @@ class FreqtradeBot:
:param order: Current on exchange stoploss order :param order: Current on exchange stoploss order
:return: None :return: None
""" """
if self.exchange.stoploss_adjust(trade.stop_loss, order):
if trade.stop_loss > float(order['info']['stopPrice']):
# we check if the update is neccesary # we check if the update is neccesary
update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60) update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60)
if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() >= update_beat: if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() >= update_beat:
# cancelling the current stoploss on exchange first # cancelling the current stoploss on exchange first
logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s})' logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s}) '
'in order to add another one ...', order['id']) 'in order to add another one ...', order['id'])
try: try:
self.exchange.cancel_order(order['id'], trade.pair) self.exchange.cancel_order(order['id'], trade.pair)
@ -751,10 +800,8 @@ class FreqtradeBot:
f"for pair {trade.pair}") f"for pair {trade.pair}")
# Create new stoploss order # Create new stoploss order
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss, if not self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss,
rate=trade.stop_loss): rate=trade.stop_loss):
return False
else:
logger.warning(f"Could not create trailing stoploss order " logger.warning(f"Could not create trailing stoploss order "
f"for pair {trade.pair}.") f"for pair {trade.pair}.")
@ -769,8 +816,8 @@ class FreqtradeBot:
) )
if should_sell.sell_flag: if should_sell.sell_flag:
logger.info(f'Executing Sell for {trade.pair}. Reason: {should_sell.sell_type}')
self.execute_sell(trade, sell_rate, should_sell.sell_type) self.execute_sell(trade, sell_rate, should_sell.sell_type)
logger.info('executed sell, reason: %s', should_sell.sell_type)
return True return True
return False return False
@ -813,41 +860,37 @@ class FreqtradeBot:
if ((order['side'] == 'buy' and order['status'] == 'canceled') if ((order['side'] == 'buy' and order['status'] == 'canceled')
or (self._check_timed_out('buy', order))): or (self._check_timed_out('buy', order))):
self.handle_timedout_limit_buy(trade, order) self.handle_timedout_limit_buy(trade, order)
self.wallets.update() self.wallets.update()
order_type = self.strategy.order_types['buy']
self._notify_buy_cancel(trade, order_type)
elif ((order['side'] == 'sell' and order['status'] == 'canceled') elif ((order['side'] == 'sell' and order['status'] == 'canceled')
or (self._check_timed_out('sell', order))): or (self._check_timed_out('sell', order))):
self.handle_timedout_limit_sell(trade, order) self.handle_timedout_limit_sell(trade, order)
self.wallets.update() self.wallets.update()
order_type = self.strategy.order_types['sell']
def handle_buy_order_full_cancel(self, trade: Trade, reason: str) -> None: self._notify_sell_cancel(trade, order_type)
"""Close trade in database and send message"""
Trade.session.delete(trade)
Trade.session.flush()
logger.info('Buy order %s for %s.', reason, trade)
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Unfilled buy order for {trade.pair} {reason}'
})
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool: def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
""" """
Buy timeout - cancel order Buy timeout - cancel order
:return: True if order was fully cancelled :return: True if order was fully cancelled
""" """
reason = "cancelled due to timeout"
if order['status'] != 'canceled': if order['status'] != 'canceled':
reason = "cancelled due to timeout"
corder = self.exchange.cancel_order(trade.open_order_id, trade.pair) corder = self.exchange.cancel_order(trade.open_order_id, trade.pair)
logger.info('Buy order %s for %s.', reason, trade)
else: else:
# Order was cancelled already, so we can reuse the existing dict # Order was cancelled already, so we can reuse the existing dict
corder = order corder = order
reason = "canceled on Exchange" reason = "cancelled on exchange"
logger.info('Buy order %s for %s.', reason, trade)
if corder.get('remaining', order['remaining']) == order['amount']: if corder.get('remaining', order['remaining']) == order['amount']:
# if trade is not partially completed, just delete the trade # if trade is not partially completed, just delete the trade
self.handle_buy_order_full_cancel(trade, reason) Trade.session.delete(trade)
Trade.session.flush()
return True return True
# if trade is partially complete, edit the stake details for the trade # if trade is partially complete, edit the stake details for the trade
@ -882,24 +925,22 @@ class FreqtradeBot:
Sell timeout - cancel order and update trade Sell timeout - cancel order and update trade
:return: True if order was fully cancelled :return: True if order was fully cancelled
""" """
# if trade is not partially completed, just cancel the trade
if order['remaining'] == order['amount']: if order['remaining'] == order['amount']:
# if trade is not partially completed, just cancel the trade
if order["status"] != "canceled": if order["status"] != "canceled":
reason = "due to timeout" reason = "cancelled due to timeout"
# if trade is not partially completed, just delete the trade
self.exchange.cancel_order(trade.open_order_id, trade.pair) self.exchange.cancel_order(trade.open_order_id, trade.pair)
logger.info('Sell order timeout for %s.', trade) logger.info('Sell order %s for %s.', reason, trade)
else: else:
reason = "on exchange" reason = "cancelled on exchange"
logger.info('Sell order canceled on exchange for %s.', trade) logger.info('Sell order %s for %s.', reason, trade)
trade.close_rate = None trade.close_rate = None
trade.close_profit = None trade.close_profit = None
trade.close_date = None trade.close_date = None
trade.is_open = True trade.is_open = True
trade.open_order_id = None trade.open_order_id = None
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Unfilled sell order for {trade.pair} cancelled {reason}'
})
return True return True
@ -931,13 +972,13 @@ class FreqtradeBot:
raise DependencyException( raise DependencyException(
f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}") f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}")
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None: def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> bool:
""" """
Executes a limit sell for the given trade and limit Executes a limit sell for the given trade and limit
:param trade: Trade instance :param trade: Trade instance
:param limit: limit rate for the sell order :param limit: limit rate for the sell order
:param sellreason: Reason the sell was triggered :param sellreason: Reason the sell was triggered
:return: None :return: True if it succeeds (supported) False (not supported)
""" """
sell_type = 'sell' sell_type = 'sell'
if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS): if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
@ -958,7 +999,7 @@ class FreqtradeBot:
order_type = self.strategy.order_types[sell_type] order_type = self.strategy.order_types[sell_type]
if sell_reason == SellType.EMERGENCY_SELL: if sell_reason == SellType.EMERGENCY_SELL:
# Emergencysells (default to market!) # Emergency sells (default to market!)
order_type = self.strategy.order_types.get("emergencysell", "market") order_type = self.strategy.order_types.get("emergencysell", "market")
amount = self._safe_sell_amount(trade.pair, trade.amount) amount = self._safe_sell_amount(trade.pair, trade.amount)
@ -983,7 +1024,9 @@ class FreqtradeBot:
self._notify_sell(trade, order_type) self._notify_sell(trade, order_type)
def _notify_sell(self, trade: Trade, order_type: str): return True
def _notify_sell(self, trade: Trade, order_type: str) -> None:
""" """
Sends rpc notification when a sell occured. Sends rpc notification when a sell occured.
""" """
@ -999,7 +1042,7 @@ class FreqtradeBot:
'exchange': trade.exchange.capitalize(), 'exchange': trade.exchange.capitalize(),
'pair': trade.pair, 'pair': trade.pair,
'gain': gain, 'gain': gain,
'limit': trade.close_rate_requested, 'limit': profit_rate,
'order_type': order_type, 'order_type': order_type,
'amount': trade.amount, 'amount': trade.amount,
'open_rate': trade.open_rate, 'open_rate': trade.open_rate,
@ -1010,6 +1053,44 @@ class FreqtradeBot:
'open_date': trade.open_date, 'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(), 'close_date': trade.close_date or datetime.utcnow(),
'stake_currency': self.config['stake_currency'], 'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
}
if 'fiat_display_currency' in self.config:
msg.update({
'fiat_currency': self.config['fiat_display_currency'],
})
# Send the message
self.rpc.send_msg(msg)
def _notify_sell_cancel(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a sell cancel occured.
"""
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
current_rate = self.get_sell_rate(trade.pair, False)
profit_percent = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_percent > 0 else "loss"
msg = {
'type': RPCMessageType.SELL_CANCEL_NOTIFICATION,
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
'gain': gain,
'limit': profit_rate,
'order_type': order_type,
'amount': trade.amount,
'open_rate': trade.open_rate,
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_percent': profit_percent,
'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
} }
if 'fiat_display_currency' in self.config: if 'fiat_display_currency' in self.config:
@ -1024,7 +1105,7 @@ class FreqtradeBot:
# Common update trade state methods # Common update trade state methods
# #
def update_trade_state(self, trade, action_order: dict = None): def update_trade_state(self, trade: Trade, action_order: dict = None) -> None:
""" """
Checks trades with open orders and updates the amount if necessary Checks trades with open orders and updates the amount if necessary
""" """

View File

@ -38,8 +38,8 @@ def main(sysargv: List[str] = None) -> None:
# No subcommand was issued. # No subcommand was issued.
raise OperationalException( raise OperationalException(
"Usage of Freqtrade requires a subcommand to be specified.\n" "Usage of Freqtrade requires a subcommand to be specified.\n"
"To have the previous behavior (bot executing trades in live/dry-run modes, " "To have the bot executing trades in live/dry-run modes, "
"depending on the value of the `dry_run` setting in the config), run freqtrade " "depending on the value of the `dry_run` setting in the config, run Freqtrade "
"as `freqtrade trade [options...]`.\n" "as `freqtrade trade [options...]`.\n"
"To see the full list of options available, please use " "To see the full list of options available, please use "
"`freqtrade --help` or `freqtrade <command> --help`." "`freqtrade --help` or `freqtrade <command> --help`."

View File

@ -6,6 +6,7 @@ import logging
import re import re
from datetime import datetime from datetime import datetime
from pathlib import Path from pathlib import Path
from typing import Any
from typing.io import IO from typing.io import IO
import numpy as np import numpy as np
@ -40,28 +41,30 @@ def datesarray_to_datetimearray(dates: np.ndarray) -> np.ndarray:
return dates.dt.to_pydatetime() return dates.dt.to_pydatetime()
def file_dump_json(filename: Path, data, is_zip=False) -> None: def file_dump_json(filename: Path, data: Any, is_zip: bool = False) -> None:
""" """
Dump JSON data into a file Dump JSON data into a file
:param filename: file to create :param filename: file to create
:param data: JSON Data to save :param data: JSON Data to save
:return: :return:
""" """
logger.info(f'dumping json to "{filename}"')
if is_zip: if is_zip:
if filename.suffix != '.gz': if filename.suffix != '.gz':
filename = filename.with_suffix('.gz') filename = filename.with_suffix('.gz')
logger.info(f'dumping json to "{filename}"')
with gzip.open(filename, 'w') as fp: with gzip.open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE) rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
else: else:
logger.info(f'dumping json to "{filename}"')
with open(filename, 'w') as fp: with open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE) rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
logger.debug(f'done json to "{filename}"') logger.debug(f'done json to "{filename}"')
def json_load(datafile: IO): def json_load(datafile: IO) -> Any:
""" """
load data with rapidjson load data with rapidjson
Use this to have a consistent experience, Use this to have a consistent experience,
@ -90,6 +93,12 @@ def file_load_json(file):
return pairdata return pairdata
def pair_to_filename(pair: str) -> str:
for ch in ['/', '-', ' ', '.', '@', '$', '+', ':']:
pair = pair.replace(ch, '_')
return pair
def format_ms_time(date: int) -> str: def format_ms_time(date: int) -> str:
""" """
convert MS date to readable format. convert MS date to readable format.
@ -125,11 +134,11 @@ def round_dict(d, n):
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()} return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
def plural(num, singular: str, plural: str = None) -> str: def plural(num: float, singular: str, plural: str = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's' return singular if (num == 1 or num == -1) else plural or singular + 's'
def render_template(templatefile: str, arguments: dict = {}): def render_template(templatefile: str, arguments: dict = {}) -> str:
from jinja2 import Environment, PackageLoader, select_autoescape from jinja2 import Environment, PackageLoader, select_autoescape
@ -138,5 +147,4 @@ def render_template(templatefile: str, arguments: dict = {}):
autoescape=select_autoescape(['html', 'xml']) autoescape=select_autoescape(['html', 'xml'])
) )
template = env.get_template(templatefile) template = env.get_template(templatefile)
return template.render(**arguments) return template.render(**arguments)

View File

@ -9,11 +9,13 @@ from datetime import datetime, timedelta
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List, NamedTuple, Optional from typing import Any, Dict, List, NamedTuple, Optional
import arrow
from pandas import DataFrame from pandas import DataFrame
from freqtrade.configuration import (TimeRange, remove_credentials, from freqtrade.configuration import (TimeRange, remove_credentials,
validate_config_consistency) validate_config_consistency)
from freqtrade.data import history from freqtrade.data import history
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
@ -24,7 +26,7 @@ from freqtrade.optimize.optimize_reports import (
from freqtrade.persistence import Trade from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode from freqtrade.state import RunMode
from freqtrade.strategy.interface import IStrategy, SellType from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -117,6 +119,7 @@ class Backtesting:
timerange=timerange, timerange=timerange,
startup_candles=self.required_startup, startup_candles=self.required_startup,
fail_without_data=True, fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
) )
min_date, max_date = history.get_timerange(data) min_date, max_date = history.get_timerange(data)
@ -148,7 +151,7 @@ class Backtesting:
logger.info(f'Dumping backtest results to {recordfilename}') logger.info(f'Dumping backtest results to {recordfilename}')
file_dump_json(recordfilename, records) file_dump_json(recordfilename, records)
def _get_ticker_list(self, processed) -> Dict[str, DataFrame]: def _get_ticker_list(self, processed: Dict) -> Dict[str, DataFrame]:
""" """
Helper function to convert a processed tickerlist into a list for performance reasons. Helper function to convert a processed tickerlist into a list for performance reasons.
@ -175,7 +178,8 @@ class Backtesting:
ticker[pair] = [x for x in ticker_data.itertuples()] ticker[pair] = [x for x in ticker_data.itertuples()]
return ticker return ticker
def _get_close_rate(self, sell_row, trade: Trade, sell, trade_dur) -> float: def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,
trade_dur: int) -> float:
""" """
Get close rate for backtesting result Get close rate for backtesting result
""" """
@ -280,7 +284,7 @@ class Backtesting:
return None return None
def backtest(self, processed: Dict, stake_amount: float, def backtest(self, processed: Dict, stake_amount: float,
start_date, end_date, start_date: arrow.Arrow, end_date: arrow.Arrow,
max_open_trades: int = 0, position_stacking: bool = False) -> DataFrame: max_open_trades: int = 0, position_stacking: bool = False) -> DataFrame:
""" """
Implement backtesting functionality Implement backtesting functionality
@ -395,7 +399,7 @@ class Backtesting:
# Trim startup period from analyzed dataframe # Trim startup period from analyzed dataframe
for pair, df in preprocessed.items(): for pair, df in preprocessed.items():
preprocessed[pair] = history.trim_dataframe(df, timerange) preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = history.get_timerange(preprocessed) min_date, max_date = history.get_timerange(preprocessed)
logger.info( logger.info(
@ -404,12 +408,12 @@ class Backtesting:
) )
# Execute backtest and print results # Execute backtest and print results
all_results[self.strategy.get_strategy_name()] = self.backtest( all_results[self.strategy.get_strategy_name()] = self.backtest(
processed=preprocessed, processed=preprocessed,
stake_amount=self.config['stake_amount'], stake_amount=self.config['stake_amount'],
start_date=min_date, start_date=min_date,
end_date=max_date, end_date=max_date,
max_open_trades=max_open_trades, max_open_trades=max_open_trades,
position_stacking=position_stacking, position_stacking=position_stacking,
) )
for strategy, results in all_results.items(): for strategy, results in all_results.items():
@ -426,7 +430,10 @@ class Backtesting:
results=results)) results=results))
print(' SELL REASON STATS '.center(133, '=')) print(' SELL REASON STATS '.center(133, '='))
print(generate_text_table_sell_reason(data, results)) print(generate_text_table_sell_reason(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results))
print(' LEFT OPEN TRADES REPORT '.center(133, '=')) print(' LEFT OPEN TRADES REPORT '.center(133, '='))
print(generate_text_table(data, print(generate_text_table(data,
@ -436,7 +443,7 @@ class Backtesting:
print() print()
if len(all_results) > 1: if len(all_results) > 1:
# Print Strategy summary table # Print Strategy summary table
print(' Strategy Summary '.center(133, '=')) print(' STRATEGY SUMMARY '.center(133, '='))
print(generate_text_table_strategy(self.config['stake_currency'], print(generate_text_table_strategy(self.config['stake_currency'],
self.config['max_open_trades'], self.config['max_open_trades'],
all_results=all_results)) all_results=all_results))

View File

@ -22,7 +22,8 @@ from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects) wrap_non_picklable_objects)
from pandas import DataFrame from pandas import DataFrame
from freqtrade.data.history import get_timerange, trim_dataframe from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural, round_dict from freqtrade.misc import plural, round_dict
from freqtrade.optimize.backtesting import Backtesting from freqtrade.optimize.backtesting import Backtesting
@ -59,6 +60,7 @@ class Hyperopt:
hyperopt = Hyperopt(config) hyperopt = Hyperopt(config)
hyperopt.start() hyperopt.start()
""" """
def __init__(self, config: Dict[str, Any]) -> None: def __init__(self, config: Dict[str, Any]) -> None:
self.config = config self.config = config
@ -90,13 +92,13 @@ class Hyperopt:
# Populate functions here (hasattr is slow so should not be run during "regular" operations) # Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'): if hasattr(self.custom_hyperopt, 'populate_indicators'):
self.backtesting.strategy.advise_indicators = \ self.backtesting.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore self.custom_hyperopt.populate_indicators # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'): if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.backtesting.strategy.advise_buy = \ self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.populate_buy_trend # type: ignore self.custom_hyperopt.populate_buy_trend # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'): if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.backtesting.strategy.advise_sell = \ self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.populate_sell_trend # type: ignore self.custom_hyperopt.populate_sell_trend # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set # Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True): if self.config.get('use_max_market_positions', True):
@ -117,11 +119,11 @@ class Hyperopt:
self.print_json = self.config.get('print_json', False) self.print_json = self.config.get('print_json', False)
@staticmethod @staticmethod
def get_lock_filename(config) -> str: def get_lock_filename(config: Dict[str, Any]) -> str:
return str(config['user_data_dir'] / 'hyperopt.lock') return str(config['user_data_dir'] / 'hyperopt.lock')
def clean_hyperopt(self): def clean_hyperopt(self) -> None:
""" """
Remove hyperopt pickle files to restart hyperopt. Remove hyperopt pickle files to restart hyperopt.
""" """
@ -158,7 +160,7 @@ class Hyperopt:
f"saved to '{self.trials_file}'.") f"saved to '{self.trials_file}'.")
@staticmethod @staticmethod
def _read_trials(trials_file) -> List: def _read_trials(trials_file: Path) -> List:
""" """
Read hyperopt trials file Read hyperopt trials file
""" """
@ -189,7 +191,7 @@ class Hyperopt:
return result return result
@staticmethod @staticmethod
def print_epoch_details(results, total_epochs, print_json: bool, def print_epoch_details(results, total_epochs: int, print_json: bool,
no_header: bool = False, header_str: str = None) -> None: no_header: bool = False, header_str: str = None) -> None:
""" """
Display details of the hyperopt result Display details of the hyperopt result
@ -218,7 +220,7 @@ class Hyperopt:
Hyperopt._params_pretty_print(params, 'trailing', "Trailing stop:") Hyperopt._params_pretty_print(params, 'trailing', "Trailing stop:")
@staticmethod @staticmethod
def _params_update_for_json(result_dict, params, space: str): def _params_update_for_json(result_dict, params, space: str) -> None:
if space in params: if space in params:
space_params = Hyperopt._space_params(params, space) space_params = Hyperopt._space_params(params, space)
if space in ['buy', 'sell']: if space in ['buy', 'sell']:
@ -235,7 +237,7 @@ class Hyperopt:
result_dict.update(space_params) result_dict.update(space_params)
@staticmethod @staticmethod
def _params_pretty_print(params, space: str, header: str): def _params_pretty_print(params, space: str, header: str) -> None:
if space in params: if space in params:
space_params = Hyperopt._space_params(params, space, 5) space_params = Hyperopt._space_params(params, space, 5)
if space == 'stoploss': if space == 'stoploss':
@ -251,7 +253,7 @@ class Hyperopt:
return round_dict(d, r) if r else d return round_dict(d, r) if r else d
@staticmethod @staticmethod
def is_best_loss(results, current_best_loss) -> bool: def is_best_loss(results, current_best_loss: float) -> bool:
return results['loss'] < current_best_loss return results['loss'] < current_best_loss
def print_results(self, results) -> None: def print_results(self, results) -> None:
@ -345,15 +347,15 @@ class Hyperopt:
if self.has_space('roi'): if self.has_space('roi'):
self.backtesting.strategy.minimal_roi = \ self.backtesting.strategy.minimal_roi = \
self.custom_hyperopt.generate_roi_table(params_dict) self.custom_hyperopt.generate_roi_table(params_dict)
if self.has_space('buy'): if self.has_space('buy'):
self.backtesting.strategy.advise_buy = \ self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.buy_strategy_generator(params_dict) self.custom_hyperopt.buy_strategy_generator(params_dict)
if self.has_space('sell'): if self.has_space('sell'):
self.backtesting.strategy.advise_sell = \ self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.sell_strategy_generator(params_dict) self.custom_hyperopt.sell_strategy_generator(params_dict)
if self.has_space('stoploss'): if self.has_space('stoploss'):
self.backtesting.strategy.stoploss = params_dict['stoploss'] self.backtesting.strategy.stoploss = params_dict['stoploss']
@ -372,12 +374,12 @@ class Hyperopt:
min_date, max_date = get_timerange(processed) min_date, max_date = get_timerange(processed)
backtesting_results = self.backtesting.backtest( backtesting_results = self.backtesting.backtest(
processed=processed, processed=processed,
stake_amount=self.config['stake_amount'], stake_amount=self.config['stake_amount'],
start_date=min_date, start_date=min_date,
end_date=max_date, end_date=max_date,
max_open_trades=self.max_open_trades, max_open_trades=self.max_open_trades,
position_stacking=self.position_stacking, position_stacking=self.position_stacking,
) )
return self._get_results_dict(backtesting_results, min_date, max_date, return self._get_results_dict(backtesting_results, min_date, max_date,
params_dict, params_details) params_dict, params_details)
@ -438,7 +440,7 @@ class Hyperopt:
random_state=self.random_state, random_state=self.random_state,
) )
def fix_optimizer_models_list(self): def fix_optimizer_models_list(self) -> None:
""" """
WORKAROUND: Since skopt is not actively supported, this resolves problems with skopt WORKAROUND: Since skopt is not actively supported, this resolves problems with skopt
memory usage, see also: https://github.com/scikit-optimize/scikit-optimize/pull/746 memory usage, see also: https://github.com/scikit-optimize/scikit-optimize/pull/746
@ -460,7 +462,7 @@ class Hyperopt:
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked) wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked)
@staticmethod @staticmethod
def load_previous_results(trials_file) -> List: def load_previous_results(trials_file: Path) -> List:
""" """
Load data for epochs from the file if we have one Load data for epochs from the file if we have one
""" """
@ -469,8 +471,8 @@ class Hyperopt:
trials = Hyperopt._read_trials(trials_file) trials = Hyperopt._read_trials(trials_file)
if trials[0].get('is_best') is None: if trials[0].get('is_best') is None:
raise OperationalException( raise OperationalException(
"The file with Hyperopt results is incompatible with this version " "The file with Hyperopt results is incompatible with this version "
"of Freqtrade and cannot be loaded.") "of Freqtrade and cannot be loaded.")
logger.info(f"Loaded {len(trials)} previous evaluations from disk.") logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
return trials return trials

View File

@ -207,7 +207,7 @@ class IHyperOpt(ABC):
# so this intermediate parameter is used as the value of the difference between # so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the # them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method. # generate_trailing_params() method.
# # This is similar to the hyperspace dimensions used for constructing the ROI tables. # This is similar to the hyperspace dimensions used for constructing the ROI tables.
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'), Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'), Categorical([True, False], name='trailing_only_offset_is_reached'),

View File

@ -28,18 +28,19 @@ class SharpeHyperOptLoss(IHyperOptLoss):
Uses Sharpe Ratio calculation. Uses Sharpe Ratio calculation.
""" """
total_profit = results.profit_percent total_profit = results["profit_percent"]
days_period = (max_date - min_date).days days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade # adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005 total_profit = total_profit - 0.0005
expected_yearly_return = total_profit.sum() / days_period expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if (np.std(total_profit) != 0.): if (np.std(total_profit) != 0.):
sharp_ratio = expected_yearly_return / np.std(total_profit) * np.sqrt(365) sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else: else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal. # Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20. sharp_ratio = -20.
# print(expected_yearly_return, np.std(total_profit), sharp_ratio) # print(expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio return -sharp_ratio

View File

@ -0,0 +1,62 @@
"""
SharpeHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SharpeHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
annual_risk_free_rate = 0.0
risk_free_rate = annual_risk_free_rate / days_in_year
# apply slippage per trade to profit_percent
results.loc[:, 'profit_percent_after_slippage'] = \
results['profit_percent'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate
expected_returns_mean = total_profit.mean()
up_stdev = total_profit.std()
if (up_stdev != 0.):
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@ -19,9 +19,18 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f') floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = [] tabular_data = []
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %', headers = [
f'tot profit {stake_currency}', 'tot profit %', 'avg duration', 'Pair',
'profit', 'loss'] 'Buys',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
'Tot Profit %',
'Avg Duration',
'Wins',
'Draws',
'Losses'
]
for pair in data: for pair in data:
result = results[results.pair == pair] result = results[results.pair == pair]
if skip_nan and result.profit_abs.isnull().all(): if skip_nan and result.profit_abs.isnull().all():
@ -37,6 +46,7 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
str(timedelta( str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00', minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]), len(result[result.profit_abs > 0]),
len(result[result.profit_abs == 0]),
len(result[result.profit_abs < 0]) len(result[result.profit_abs < 0])
]) ])
@ -51,6 +61,7 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
str(timedelta( str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00', minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]), len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0]) len(results[results.profit_abs < 0])
]) ])
# Ignore type as floatfmt does allow tuples but mypy does not know that # Ignore type as floatfmt does allow tuples but mypy does not know that
@ -58,7 +69,9 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
floatfmt=floatfmt, tablefmt="pipe") # type: ignore floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def generate_text_table_sell_reason(data: Dict[str, Dict], results: DataFrame) -> str: def generate_text_table_sell_reason(
data: Dict[str, Dict], stake_currency: str, max_open_trades: int, results: DataFrame
) -> str:
""" """
Generate small table outlining Backtest results Generate small table outlining Backtest results
:param data: Dict of <pair: dataframe> containing data that was used during backtesting. :param data: Dict of <pair: dataframe> containing data that was used during backtesting.
@ -66,13 +79,39 @@ def generate_text_table_sell_reason(data: Dict[str, Dict], results: DataFrame) -
:return: pretty printed table with tabulate as string :return: pretty printed table with tabulate as string
""" """
tabular_data = [] tabular_data = []
headers = ['Sell Reason', 'Count', 'Profit', 'Loss', 'Profit %'] headers = [
"Sell Reason",
"Sells",
"Wins",
"Draws",
"Losses",
"Avg Profit %",
"Cum Profit %",
f"Tot Profit {stake_currency}",
"Tot Profit %",
]
for reason, count in results['sell_reason'].value_counts().iteritems(): for reason, count in results['sell_reason'].value_counts().iteritems():
result = results.loc[results['sell_reason'] == reason] result = results.loc[results['sell_reason'] == reason]
profit = len(result[result['profit_abs'] >= 0]) wins = len(result[result['profit_abs'] > 0])
draws = len(result[result['profit_abs'] == 0])
loss = len(result[result['profit_abs'] < 0]) loss = len(result[result['profit_abs'] < 0])
profit_mean = round(result['profit_percent'].mean() * 100.0, 2) profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
tabular_data.append([reason.value, count, profit, loss, profit_mean]) profit_sum = round(result["profit_percent"].sum() * 100.0, 2)
profit_tot = result['profit_abs'].sum()
profit_percent_tot = round(result['profit_percent'].sum() * 100.0 / max_open_trades, 2)
tabular_data.append(
[
reason.value,
count,
wins,
draws,
loss,
profit_mean,
profit_sum,
profit_tot,
profit_percent_tot,
]
)
return tabulate(tabular_data, headers=headers, tablefmt="pipe") return tabulate(tabular_data, headers=headers, tablefmt="pipe")
@ -88,9 +127,9 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f') floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = [] tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %', headers = ['Strategy', 'Buys', 'Avg Profit %', 'Cum Profit %',
f'tot profit {stake_currency}', 'tot profit %', 'avg duration', f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'profit', 'loss'] 'Wins', 'Draws', 'Losses']
for strategy, results in all_results.items(): for strategy, results in all_results.items():
tabular_data.append([ tabular_data.append([
strategy, strategy,
@ -102,6 +141,7 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
str(timedelta( str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00', minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]), len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0]) len(results[results.profit_abs < 0])
]) ])
# Ignore type as floatfmt does allow tuples but mypy does not know that # Ignore type as floatfmt does allow tuples but mypy does not know that
@ -113,9 +153,9 @@ def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d') floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
tabular_data = [] tabular_data = []
headers = ['pair', 'stoploss', 'win rate', 'risk reward ratio', headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
'required risk reward', 'expectancy', 'total number of trades', 'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
'average duration (min)'] 'Average Duration (min)']
for result in results.items(): for result in results.items():
if result[1].nb_trades > 0: if result[1].nb_trades > 0:

View File

@ -7,7 +7,7 @@ Provides lists as configured in config.json
import logging import logging
from abc import ABC, abstractmethod, abstractproperty from abc import ABC, abstractmethod, abstractproperty
from copy import deepcopy from copy import deepcopy
from typing import Dict, List from typing import Any, Dict, List
from freqtrade.exchange import market_is_active from freqtrade.exchange import market_is_active
@ -16,7 +16,8 @@ logger = logging.getLogger(__name__)
class IPairList(ABC): class IPairList(ABC):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict, def __init__(self, exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None: pairlist_pos: int) -> None:
""" """
:param exchange: Exchange instance :param exchange: Exchange instance

View File

@ -48,10 +48,10 @@ class PrecisionFilter(IPairList):
""" """
Filters and sorts pairlists and assigns and returns them again. Filters and sorts pairlists and assigns and returns them again.
""" """
stoploss = None stoploss = self._config.get('stoploss')
if self._config.get('stoploss') is not None: if stoploss is not None:
# Precalculate sanitized stoploss value to avoid recalculation for every pair # Precalculate sanitized stoploss value to avoid recalculation for every pair
stoploss = 1 - abs(self._config.get('stoploss')) stoploss = 1 - abs(stoploss)
# Copy list since we're modifying this list # Copy list since we're modifying this list
for p in deepcopy(pairlist): for p in deepcopy(pairlist):
ticker = tickers.get(p) ticker = tickers.get(p)

View File

@ -1,6 +1,6 @@
import logging import logging
from copy import deepcopy from copy import deepcopy
from typing import Dict, List from typing import Any, Dict, List
from freqtrade.pairlist.IPairList import IPairList from freqtrade.pairlist.IPairList import IPairList
@ -9,7 +9,8 @@ logger = logging.getLogger(__name__)
class PriceFilter(IPairList): class PriceFilter(IPairList):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict, def __init__(self, exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None: pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos) super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)

View File

@ -0,0 +1,59 @@
import logging
from copy import deepcopy
from typing import Dict, List
from freqtrade.pairlist.IPairList import IPairList
logger = logging.getLogger(__name__)
class SpreadFilter(IPairList):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
self._max_spread_ratio = pairlistconfig.get('max_spread_ratio', 0.005)
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requries tickers, an empty List is passed
as tickers argument to filter_pairlist
"""
return True
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
return (f"{self.name} - Filtering pairs with ask/bid diff above "
f"{self._max_spread_ratio * 100}%.")
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new whitelist
"""
# Copy list since we're modifying this list
spread = None
for p in deepcopy(pairlist):
ticker = tickers.get(p)
assert ticker is not None
if 'bid' in ticker and 'ask' in ticker:
spread = 1 - ticker['bid'] / ticker['ask']
if not ticker or spread > self._max_spread_ratio:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because spread {spread * 100:.3f}% >"
f"{self._max_spread_ratio * 100}%")
pairlist.remove(p)
else:
pairlist.remove(p)
return pairlist

View File

@ -6,7 +6,7 @@ Provides lists as configured in config.json
""" """
import logging import logging
from datetime import datetime from datetime import datetime
from typing import Dict, List from typing import Any, Dict, List
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.pairlist.IPairList import IPairList from freqtrade.pairlist.IPairList import IPairList
@ -18,7 +18,7 @@ SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume']
class VolumePairList(IPairList): class VolumePairList(IPairList):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict, def __init__(self, exchange, pairlistmanager, config: Dict[str, Any], pairlistconfig: dict,
pairlist_pos: int) -> None: pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos) super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
@ -28,6 +28,7 @@ class VolumePairList(IPairList):
'for "pairlist.config.number_assets"') 'for "pairlist.config.number_assets"')
self._number_pairs = self._pairlistconfig['number_assets'] self._number_pairs = self._pairlistconfig['number_assets']
self._sort_key = self._pairlistconfig.get('sort_key', 'quoteVolume') self._sort_key = self._pairlistconfig.get('sort_key', 'quoteVolume')
self._min_value = self._pairlistconfig.get('min_value', 0)
self.refresh_period = self._pairlistconfig.get('refresh_period', 1800) self.refresh_period = self._pairlistconfig.get('refresh_period', 1800)
if not self._exchange.exchange_has('fetchTickers'): if not self._exchange.exchange_has('fetchTickers'):
@ -73,11 +74,13 @@ class VolumePairList(IPairList):
tickers, tickers,
self._config['stake_currency'], self._config['stake_currency'],
self._sort_key, self._sort_key,
self._min_value
) )
else: else:
return pairlist return pairlist
def _gen_pair_whitelist(self, pairlist, tickers, base_currency: str, key: str) -> List[str]: def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict,
base_currency: str, key: str, min_val: int) -> List[str]:
""" """
Updates the whitelist with with a dynamically generated list Updates the whitelist with with a dynamically generated list
:param base_currency: base currency as str :param base_currency: base currency as str
@ -96,6 +99,9 @@ class VolumePairList(IPairList):
# If other pairlist is in front, use the incomming pairlist. # If other pairlist is in front, use the incomming pairlist.
filtered_tickers = [v for k, v in tickers.items() if k in pairlist] filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
if min_val > 0:
filtered_tickers = list(filter(lambda t: t[key] > min_val, filtered_tickers))
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[key]) sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[key])
# Validate whitelist to only have active market pairs # Validate whitelist to only have active market pairs

View File

@ -64,11 +64,11 @@ def init(db_url: str, clean_open_orders: bool = False) -> None:
clean_dry_run_db() clean_dry_run_db()
def has_column(columns, searchname: str) -> bool: def has_column(columns: List, searchname: str) -> bool:
return len(list(filter(lambda x: x["name"] == searchname, columns))) == 1 return len(list(filter(lambda x: x["name"] == searchname, columns))) == 1
def get_column_def(columns, column: str, default: str) -> str: def get_column_def(columns: List, column: str, default: str) -> str:
return default if not has_column(columns, column) else column return default if not has_column(columns, column) else column
@ -246,14 +246,15 @@ class Trade(_DECL_BASE):
if self.initial_stop_loss_pct else None), if self.initial_stop_loss_pct else None),
} }
def adjust_min_max_rates(self, current_price: float): def adjust_min_max_rates(self, current_price: float) -> None:
""" """
Adjust the max_rate and min_rate. Adjust the max_rate and min_rate.
""" """
self.max_rate = max(current_price, self.max_rate or self.open_rate) self.max_rate = max(current_price, self.max_rate or self.open_rate)
self.min_rate = min(current_price, self.min_rate or self.open_rate) self.min_rate = min(current_price, self.min_rate or self.open_rate)
def adjust_stop_loss(self, current_price: float, stoploss: float, initial: bool = False): def adjust_stop_loss(self, current_price: float, stoploss: float,
initial: bool = False) -> None:
""" """
This adjusts the stop loss to it's most recently observed setting This adjusts the stop loss to it's most recently observed setting
:param current_price: Current rate the asset is traded :param current_price: Current rate the asset is traded
@ -317,10 +318,10 @@ class Trade(_DECL_BASE):
elif order_type in ('market', 'limit') and order['side'] == 'sell': elif order_type in ('market', 'limit') and order['side'] == 'sell':
self.close(order['price']) self.close(order['price'])
logger.info('%s_SELL has been fulfilled for %s.', order_type.upper(), self) logger.info('%s_SELL has been fulfilled for %s.', order_type.upper(), self)
elif order_type == 'stop_loss_limit': elif order_type in ('stop_loss_limit', 'stop-loss'):
self.stoploss_order_id = None self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss self.close_rate_requested = self.stop_loss
logger.info('STOP_LOSS_LIMIT is hit for %s.', self) logger.info('%s is hit for %s.', order_type.upper(), self)
self.close(order['average']) self.close(order['average'])
else: else:
raise ValueError(f'Unknown order type: {order_type}') raise ValueError(f'Unknown order type: {order_type}')

View File

@ -3,11 +3,14 @@ from pathlib import Path
from typing import Any, Dict, List from typing import Any, Dict, List
import pandas as pd import pandas as pd
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import (combine_tickers_with_mean, from freqtrade.data.btanalysis import (combine_tickers_with_mean,
create_cum_profit, create_cum_profit,
extract_trades_of_period, load_trades) extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import load_data
from freqtrade.misc import pair_to_filename
from freqtrade.resolvers import StrategyResolver from freqtrade.resolvers import StrategyResolver
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -36,18 +39,19 @@ def init_plotscript(config):
# Set timerange to use # Set timerange to use
timerange = TimeRange.parse_timerange(config.get("timerange")) timerange = TimeRange.parse_timerange(config.get("timerange"))
tickers = history.load_data( tickers = load_data(
datadir=config.get("datadir"), datadir=config.get("datadir"),
pairs=pairs, pairs=pairs,
timeframe=config.get('ticker_interval', '5m'), timeframe=config.get('ticker_interval', '5m'),
timerange=timerange, timerange=timerange,
data_format=config.get('dataformat_ohlcv', 'json'),
) )
trades = load_trades(config['trade_source'], trades = load_trades(config['trade_source'],
db_url=config.get('db_url'), db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'), exportfilename=config.get('exportfilename'),
) )
trades = history.trim_dataframe(trades, timerange, 'open_time') trades = trim_dataframe(trades, timerange, 'open_time')
return {"tickers": tickers, return {"tickers": tickers,
"trades": trades, "trades": trades,
"pairs": pairs, "pairs": pairs,
@ -370,12 +374,12 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
return fig return fig
def generate_plot_filename(pair, timeframe) -> str: def generate_plot_filename(pair: str, timeframe: str) -> str:
""" """
Generate filenames per pair/timeframe to be used for storing plots Generate filenames per pair/timeframe to be used for storing plots
""" """
pair_name = pair.replace("/", "_") pair_s = pair_to_filename(pair)
file_name = 'freqtrade-plot-' + pair_name + '-' + timeframe + '.html' file_name = 'freqtrade-plot-' + pair_s + '-' + timeframe + '.html'
logger.info('Generate plot file for %s', pair) logger.info('Generate plot file for %s', pair)

View File

@ -7,7 +7,7 @@ import importlib.util
import inspect import inspect
import logging import logging
from pathlib import Path from pathlib import Path
from typing import Any, Dict, Generator, List, Optional, Tuple, Type, Union from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
@ -22,13 +22,15 @@ class IResolver:
object_type: Type[Any] object_type: Type[Any]
object_type_str: str object_type_str: str
user_subdir: Optional[str] = None user_subdir: Optional[str] = None
initial_search_path: Path initial_search_path: Optional[Path]
@classmethod @classmethod
def build_search_paths(cls, config, user_subdir: Optional[str] = None, def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None,
extra_dir: Optional[str] = None) -> List[Path]: extra_dir: Optional[str] = None) -> List[Path]:
abs_paths: List[Path] = [cls.initial_search_path] abs_paths: List[Path] = []
if cls.initial_search_path:
abs_paths.append(cls.initial_search_path)
if user_subdir: if user_subdir:
abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir)) abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir))
@ -40,12 +42,14 @@ class IResolver:
return abs_paths return abs_paths
@classmethod @classmethod
def _get_valid_object(cls, module_path: Path, def _get_valid_object(cls, module_path: Path, object_name: Optional[str],
object_name: Optional[str]) -> Generator[Any, None, None]: enum_failed: bool = False) -> Iterator[Any]:
""" """
Generator returning objects with matching object_type and object_name in the path given. Generator returning objects with matching object_type and object_name in the path given.
:param module_path: absolute path to the module :param module_path: absolute path to the module
:param object_name: Class name of the object :param object_name: Class name of the object
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:return: generator containing matching objects :return: generator containing matching objects
""" """
@ -58,10 +62,13 @@ class IResolver:
except (ModuleNotFoundError, SyntaxError) as err: except (ModuleNotFoundError, SyntaxError) as err:
# Catch errors in case a specific module is not installed # Catch errors in case a specific module is not installed
logger.warning(f"Could not import {module_path} due to '{err}'") logger.warning(f"Could not import {module_path} due to '{err}'")
if enum_failed:
return iter([None])
valid_objects_gen = ( valid_objects_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass) obj for name, obj in inspect.getmembers(module, inspect.isclass)
if (object_name is None or object_name == name) and cls.object_type in obj.__bases__ if ((object_name is None or object_name == name) and
issubclass(obj, cls.object_type) and obj is not cls.object_type)
) )
return valid_objects_gen return valid_objects_gen
@ -135,10 +142,13 @@ class IResolver:
) )
@classmethod @classmethod
def search_all_objects(cls, directory: Path) -> List[Dict[str, Any]]: def search_all_objects(cls, directory: Path,
enum_failed: bool) -> List[Dict[str, Any]]:
""" """
Searches a directory for valid objects Searches a directory for valid objects
:param directory: Path to search :param directory: Path to search
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:return: List of dicts containing 'name', 'class' and 'location' entires :return: List of dicts containing 'name', 'class' and 'location' entires
""" """
logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'") logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'")
@ -150,9 +160,10 @@ class IResolver:
continue continue
module_path = entry.resolve() module_path = entry.resolve()
logger.debug(f"Path {module_path}") logger.debug(f"Path {module_path}")
for obj in cls._get_valid_object(module_path, object_name=None): for obj in cls._get_valid_object(module_path, object_name=None,
enum_failed=enum_failed):
objects.append( objects.append(
{'name': obj.__name__, {'name': obj.__name__ if obj is not None else '',
'class': obj, 'class': obj,
'location': entry, 'location': entry,
}) })

View File

@ -9,10 +9,10 @@ from base64 import urlsafe_b64decode
from collections import OrderedDict from collections import OrderedDict
from inspect import getfullargspec from inspect import getfullargspec
from pathlib import Path from pathlib import Path
from typing import Dict, Optional from typing import Any, Dict, Optional
from freqtrade.constants import (REQUIRED_ORDERTIF, REQUIRED_ORDERTYPES, from freqtrade.constants import (REQUIRED_ORDERTIF, REQUIRED_ORDERTYPES,
USERPATH_STRATEGY) USERPATH_STRATEGIES)
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.resolvers import IResolver from freqtrade.resolvers import IResolver
from freqtrade.strategy.interface import IStrategy from freqtrade.strategy.interface import IStrategy
@ -26,11 +26,11 @@ class StrategyResolver(IResolver):
""" """
object_type = IStrategy object_type = IStrategy
object_type_str = "Strategy" object_type_str = "Strategy"
user_subdir = USERPATH_STRATEGY user_subdir = USERPATH_STRATEGIES
initial_search_path = Path(__file__).parent.parent.joinpath('strategy').resolve() initial_search_path = None
@staticmethod @staticmethod
def load_strategy(config: Optional[Dict] = None) -> IStrategy: def load_strategy(config: Dict[str, Any] = None) -> IStrategy:
""" """
Load the custom class from config parameter Load the custom class from config parameter
:param config: configuration dictionary or None :param config: configuration dictionary or None
@ -96,7 +96,8 @@ class StrategyResolver(IResolver):
return strategy return strategy
@staticmethod @staticmethod
def _override_attribute_helper(strategy, config, attribute: str, default): def _override_attribute_helper(strategy, config: Dict[str, Any],
attribute: str, default: Any):
""" """
Override attributes in the strategy. Override attributes in the strategy.
Prevalence: Prevalence:
@ -140,7 +141,7 @@ class StrategyResolver(IResolver):
""" """
abs_paths = StrategyResolver.build_search_paths(config, abs_paths = StrategyResolver.build_search_paths(config,
user_subdir=USERPATH_STRATEGY, user_subdir=USERPATH_STRATEGIES,
extra_dir=extra_dir) extra_dir=extra_dir)
if ":" in strategy_name: if ":" in strategy_name:

View File

@ -26,7 +26,9 @@ class RPCMessageType(Enum):
WARNING_NOTIFICATION = 'warning' WARNING_NOTIFICATION = 'warning'
CUSTOM_NOTIFICATION = 'custom' CUSTOM_NOTIFICATION = 'custom'
BUY_NOTIFICATION = 'buy' BUY_NOTIFICATION = 'buy'
BUY_CANCEL_NOTIFICATION = 'buy_cancel'
SELL_NOTIFICATION = 'sell' SELL_NOTIFICATION = 'sell'
SELL_CANCEL_NOTIFICATION = 'sell_cancel'
def __repr__(self): def __repr__(self):
return self.value return self.value
@ -39,6 +41,7 @@ class RPCException(Exception):
raise RPCException('*Status:* `no active trade`') raise RPCException('*Status:* `no active trade`')
""" """
def __init__(self, message: str) -> None: def __init__(self, message: str) -> None:
super().__init__(self) super().__init__(self)
self.message = message self.message = message
@ -139,7 +142,8 @@ class RPC:
results.append(trade_dict) results.append(trade_dict)
return results return results
def _rpc_status_table(self, stake_currency, fiat_display_currency: str) -> Tuple[List, List]: def _rpc_status_table(self, stake_currency: str,
fiat_display_currency: str) -> Tuple[List, List]:
trades = Trade.get_open_trades() trades = Trade.get_open_trades()
if not trades: if not trades:
raise RPCException('no active trade') raise RPCException('no active trade')
@ -156,15 +160,17 @@ class RPC:
profit_str = f'{trade_perc:.2f}%' profit_str = f'{trade_perc:.2f}%'
if self._fiat_converter: if self._fiat_converter:
fiat_profit = self._fiat_converter.convert_amount( fiat_profit = self._fiat_converter.convert_amount(
trade_profit, trade_profit,
stake_currency, stake_currency,
fiat_display_currency fiat_display_currency
) )
if fiat_profit and not isnan(fiat_profit): if fiat_profit and not isnan(fiat_profit):
profit_str += f" ({fiat_profit:.2f})" profit_str += f" ({fiat_profit:.2f})"
trades_list.append([ trades_list.append([
trade.id, trade.id,
trade.pair, trade.pair + ('*' if (trade.open_order_id is not None
and trade.close_rate_requested is None) else '')
+ ('**' if (trade.close_rate_requested is not None) else ''),
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)), shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
profit_str profit_str
]) ])
@ -385,7 +391,7 @@ class RPC:
return {'status': 'No more buy will occur from now. Run /reload_conf to reset.'} return {'status': 'No more buy will occur from now. Run /reload_conf to reset.'}
def _rpc_forcesell(self, trade_id) -> Dict[str, str]: def _rpc_forcesell(self, trade_id: str) -> Dict[str, str]:
""" """
Handler for forcesell <id>. Handler for forcesell <id>.
Sells the given trade at current price Sells the given trade at current price

View File

@ -61,7 +61,7 @@ class RPCManager:
except NotImplementedError: except NotImplementedError:
logger.error(f"Message type {msg['type']} not implemented by handler {mod.name}.") logger.error(f"Message type {msg['type']} not implemented by handler {mod.name}.")
def startup_messages(self, config, pairlist) -> None: def startup_messages(self, config: Dict[str, Any], pairlist) -> None:
if config['dry_run']: if config['dry_run']:
self.send_msg({ self.send_msg({
'type': RPCMessageType.WARNING_NOTIFICATION, 'type': RPCMessageType.WARNING_NOTIFICATION,

View File

@ -134,13 +134,18 @@ class Telegram(RPC):
msg['stake_amount_fiat'] = 0 msg['stake_amount_fiat'] = 0
message = ("*{exchange}:* Buying {pair}\n" message = ("*{exchange}:* Buying {pair}\n"
"at rate `{limit:.8f}\n" "*Amount:* `{amount:.8f}`\n"
"({stake_amount:.6f} {stake_currency}").format(**msg) "*Open Rate:* `{limit:.8f}`\n"
"*Current Rate:* `{current_rate:.8f}`\n"
"*Total:* `({stake_amount:.6f} {stake_currency}").format(**msg)
if msg.get('fiat_currency', None): if msg.get('fiat_currency', None):
message += ",{stake_amount_fiat:.3f} {fiat_currency}".format(**msg) message += ", {stake_amount_fiat:.3f} {fiat_currency}".format(**msg)
message += ")`" message += ")`"
elif msg['type'] == RPCMessageType.BUY_CANCEL_NOTIFICATION:
message = "*{exchange}:* Cancelling Open Buy Order for {pair}".format(**msg)
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION: elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
msg['amount'] = round(msg['amount'], 8) msg['amount'] = round(msg['amount'], 8)
msg['profit_percent'] = round(msg['profit_percent'] * 100, 2) msg['profit_percent'] = round(msg['profit_percent'] * 100, 2)
@ -149,10 +154,10 @@ class Telegram(RPC):
msg['duration_min'] = msg['duration'].total_seconds() / 60 msg['duration_min'] = msg['duration'].total_seconds() / 60
message = ("*{exchange}:* Selling {pair}\n" message = ("*{exchange}:* Selling {pair}\n"
"*Rate:* `{limit:.8f}`\n"
"*Amount:* `{amount:.8f}`\n" "*Amount:* `{amount:.8f}`\n"
"*Open Rate:* `{open_rate:.8f}`\n" "*Open Rate:* `{open_rate:.8f}`\n"
"*Current Rate:* `{current_rate:.8f}`\n" "*Current Rate:* `{current_rate:.8f}`\n"
"*Close Rate:* `{limit:.8f}`\n"
"*Sell Reason:* `{sell_reason}`\n" "*Sell Reason:* `{sell_reason}`\n"
"*Duration:* `{duration} ({duration_min:.1f} min)`\n" "*Duration:* `{duration} ({duration_min:.1f} min)`\n"
"*Profit:* `{profit_percent:.2f}%`").format(**msg) "*Profit:* `{profit_percent:.2f}%`").format(**msg)
@ -163,8 +168,11 @@ class Telegram(RPC):
and self._fiat_converter): and self._fiat_converter):
msg['profit_fiat'] = self._fiat_converter.convert_amount( msg['profit_fiat'] = self._fiat_converter.convert_amount(
msg['profit_amount'], msg['stake_currency'], msg['fiat_currency']) msg['profit_amount'], msg['stake_currency'], msg['fiat_currency'])
message += ('` ({gain}: {profit_amount:.8f} {stake_currency}`' message += (' `({gain}: {profit_amount:.8f} {stake_currency}'
'` / {profit_fiat:.3f} {fiat_currency})`').format(**msg) ' / {profit_fiat:.3f} {fiat_currency})`').format(**msg)
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
message = "*{exchange}:* Cancelling Open Sell Order for {pair}".format(**msg)
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION: elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
message = '*Status:* `{status}`'.format(**msg) message = '*Status:* `{status}`'.format(**msg)
@ -553,6 +561,8 @@ class Telegram(RPC):
"*/stop:* `Stops the trader`\n" \ "*/stop:* `Stops the trader`\n" \
"*/status [table]:* `Lists all open trades`\n" \ "*/status [table]:* `Lists all open trades`\n" \
" *table :* `will display trades in a table`\n" \ " *table :* `will display trades in a table`\n" \
" `pending buy orders are marked with an asterisk (*)`\n" \
" `pending sell orders are marked with a double asterisk (**)`\n" \
"*/profit:* `Lists cumulative profit from all finished trades`\n" \ "*/profit:* `Lists cumulative profit from all finished trades`\n" \
"*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, " \ "*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, " \
"regardless of profit`\n" \ "regardless of profit`\n" \

View File

@ -41,8 +41,12 @@ class Webhook(RPC):
if msg['type'] == RPCMessageType.BUY_NOTIFICATION: if msg['type'] == RPCMessageType.BUY_NOTIFICATION:
valuedict = self._config['webhook'].get('webhookbuy', None) valuedict = self._config['webhook'].get('webhookbuy', None)
elif msg['type'] == RPCMessageType.BUY_CANCEL_NOTIFICATION:
valuedict = self._config['webhook'].get('webhookbuycancel', None)
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION: elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
valuedict = self._config['webhook'].get('webhooksell', None) valuedict = self._config['webhook'].get('webhooksell', None)
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
valuedict = self._config['webhook'].get('webhooksellcancel', None)
elif msg['type'] in(RPCMessageType.STATUS_NOTIFICATION, elif msg['type'] in(RPCMessageType.STATUS_NOTIFICATION,
RPCMessageType.CUSTOM_NOTIFICATION, RPCMessageType.CUSTOM_NOTIFICATION,
RPCMessageType.WARNING_NOTIFICATION): RPCMessageType.WARNING_NOTIFICATION):

View File

@ -180,7 +180,7 @@ class IStrategy(ABC):
if pair not in self._pair_locked_until or self._pair_locked_until[pair] < until: if pair not in self._pair_locked_until or self._pair_locked_until[pair] < until:
self._pair_locked_until[pair] = until self._pair_locked_until[pair] = until
def unlock_pair(self, pair) -> None: def unlock_pair(self, pair: str) -> None:
""" """
Unlocks a pair previously locked using lock_pair. Unlocks a pair previously locked using lock_pair.
Not used by freqtrade itself, but intended to be used if users lock pairs Not used by freqtrade itself, but intended to be used if users lock pairs
@ -439,7 +439,7 @@ class IStrategy(ABC):
else: else:
return current_profit > roi return current_profit > roi
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]: def tickerdata_to_dataframe(self, tickerdata: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
""" """
Creates a dataframe and populates indicators for given ticker data Creates a dataframe and populates indicators for given ticker data
Used by optimize operations only, not during dry / live runs. Used by optimize operations only, not during dry / live runs.

View File

@ -0,0 +1,58 @@
{
"max_open_trades": {{ max_open_trades }},
"stake_currency": "{{ stake_currency }}",
"stake_amount": {{ stake_amount }},
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "{{ fiat_display_currency }}",
"ticker_interval": "{{ ticker_interval }}",
"dry_run": {{ dry_run | lower }},
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0,
"use_order_book": false,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"ask_strategy": {
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9,
"use_sell_signal": true,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false
},
{{ exchange | indent(4) }},
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": {{ telegram | lower }},
"token": "{{ telegram_token }}",
"chat_id": "{{ telegram_chat_id }}"
},
"initial_state": "running",
"forcebuy_enable": false,
"internals": {
"process_throttle_secs": 5
}
}

View File

@ -230,7 +230,7 @@ class AdvancedSampleHyperOpt(IHyperOpt):
'stoploss' optimization hyperspace. 'stoploss' optimization hyperspace.
""" """
return [ return [
Real(-0.5, -0.02, name='stoploss'), Real(-0.35, -0.02, name='stoploss'),
] ]
@staticmethod @staticmethod
@ -249,8 +249,15 @@ class AdvancedSampleHyperOpt(IHyperOpt):
# other 'trailing' hyperspace parameters. # other 'trailing' hyperspace parameters.
Categorical([True], name='trailing_stop'), Categorical([True], name='trailing_stop'),
Real(0.02, 0.35, name='trailing_stop_positive'), Real(0.01, 0.35, name='trailing_stop_positive'),
Real(0.01, 0.1, name='trailing_stop_positive_offset'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'), Categorical([True, False], name='trailing_only_offset_is_reached'),
] ]

View File

@ -124,24 +124,70 @@ class SampleStrategy(IStrategy):
# Momentum Indicators # Momentum Indicators
# ------------------------------------ # ------------------------------------
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# ADX # ADX
dataframe['adx'] = ta.ADX(dataframe) dataframe['adx'] = ta.ADX(dataframe)
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # Aroon, Aroon Oscillator # # Aroon, Aroon Oscillator
# aroon = ta.AROON(dataframe) # aroon = ta.AROON(dataframe)
# dataframe['aroonup'] = aroon['aroonup'] # dataframe['aroonup'] = aroon['aroonup']
# dataframe['aroondown'] = aroon['aroondown'] # dataframe['aroondown'] = aroon['aroondown']
# dataframe['aroonosc'] = ta.AROONOSC(dataframe) # dataframe['aroonosc'] = ta.AROONOSC(dataframe)
# # Awesome oscillator # # Awesome Oscillator
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# # Commodity Channel Index: values Oversold:<-100, Overbought:>100 # # Keltner Channel
# keltner = qtpylib.keltner_channel(dataframe)
# dataframe["kc_upperband"] = keltner["upper"]
# dataframe["kc_lowerband"] = keltner["lower"]
# dataframe["kc_middleband"] = keltner["mid"]
# dataframe["kc_percent"] = (
# (dataframe["close"] - dataframe["kc_lowerband"]) /
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
# )
# dataframe["kc_width"] = (
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
# )
# # Ultimate Oscillator
# dataframe['uo'] = ta.ULTOSC(dataframe)
# # Commodity Channel Index: values [Oversold:-100, Overbought:100]
# dataframe['cci'] = ta.CCI(dataframe) # dataframe['cci'] = ta.CCI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# # Stochastic Slow
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
# Stochastic Fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# # Stochastic RSI
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
# MACD # MACD
macd = ta.MACD(dataframe) macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd'] dataframe['macd'] = macd['macd']
@ -151,60 +197,58 @@ class SampleStrategy(IStrategy):
# MFI # MFI
dataframe['mfi'] = ta.MFI(dataframe) dataframe['mfi'] = ta.MFI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # ROC # # ROC
# dataframe['roc'] = ta.ROC(dataframe) # dataframe['roc'] = ta.ROC(dataframe)
# # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# # Stoch
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# # Stoch RSI
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
# Overlap Studies # Overlap Studies
# ------------------------------------ # ------------------------------------
# Bollinger bands # Bollinger Bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper'] dataframe['bb_upperband'] = bollinger['upper']
dataframe["bb_percent"] = (
(dataframe["close"] - dataframe["bb_lowerband"]) /
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
)
dataframe["bb_width"] = (
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
)
# Bollinger Bands - Weighted (EMA based instead of SMA)
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
# qtpylib.typical_price(dataframe), window=20, stds=2
# )
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
# dataframe["wbb_percent"] = (
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
# )
# dataframe["wbb_width"] = (
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
# dataframe["wbb_middleband"]
# )
# # EMA - Exponential Moving Average # # EMA - Exponential Moving Average
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# # SMA - Simple Moving Average # # SMA - Simple Moving Average
# dataframe['sma'] = ta.SMA(dataframe, timeperiod=40) # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
# SAR Parabol # Parabolic SAR
dataframe['sar'] = ta.SAR(dataframe) dataframe['sar'] = ta.SAR(dataframe)
# TEMA - Triple Exponential Moving Average # TEMA - Triple Exponential Moving Average
@ -264,7 +308,7 @@ class SampleStrategy(IStrategy):
# # Chart type # # Chart type
# # ------------------------------------ # # ------------------------------------
# # Heikinashi stategy # # Heikin Ashi Strategy
# heikinashi = qtpylib.heikinashi(dataframe) # heikinashi = qtpylib.heikinashi(dataframe)
# dataframe['ha_open'] = heikinashi['open'] # dataframe['ha_open'] = heikinashi['open']
# dataframe['ha_close'] = heikinashi['close'] # dataframe['ha_close'] = heikinashi['close']

View File

@ -6,7 +6,8 @@
"source": [ "source": [
"# Strategy analysis example\n", "# Strategy analysis example\n",
"\n", "\n",
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data." "Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.\n",
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location."
] ]
}, },
{ {
@ -23,18 +24,21 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from pathlib import Path\n", "from pathlib import Path\n",
"from freqtrade.configuration import Configuration\n",
"\n",
"# Customize these according to your needs.\n", "# Customize these according to your needs.\n",
"\n", "\n",
"# Initialize empty configuration object\n",
"config = Configuration.from_files([])\n",
"# Optionally, use existing configuration file\n",
"# config = Configuration.from_files([\"config.json\"])\n",
"\n",
"# Define some constants\n", "# Define some constants\n",
"timeframe = \"5m\"\n", "config[\"ticker_interval\"] = \"5m\"\n",
"# Name of the strategy class\n", "# Name of the strategy class\n",
"strategy_name = 'SampleStrategy'\n", "config[\"strategy\"] = \"SampleStrategy\"\n",
"# Path to user data\n",
"user_data_dir = Path('user_data')\n",
"# Location of the strategy\n",
"strategy_location = user_data_dir / 'strategies'\n",
"# Location of the data\n", "# Location of the data\n",
"data_location = Path(user_data_dir, 'data', 'binance')\n", "data_location = Path(config['user_data_dir'], 'data', 'binance')\n",
"# Pair to analyze - Only use one pair here\n", "# Pair to analyze - Only use one pair here\n",
"pair = \"BTC_USDT\"" "pair = \"BTC_USDT\""
] ]
@ -49,7 +53,7 @@
"from freqtrade.data.history import load_pair_history\n", "from freqtrade.data.history import load_pair_history\n",
"\n", "\n",
"candles = load_pair_history(datadir=data_location,\n", "candles = load_pair_history(datadir=data_location,\n",
" timeframe=timeframe,\n", " timeframe=config[\"ticker_interval\"],\n",
" pair=pair)\n", " pair=pair)\n",
"\n", "\n",
"# Confirm success\n", "# Confirm success\n",
@ -73,9 +77,7 @@
"source": [ "source": [
"# Load strategy using values set above\n", "# Load strategy using values set above\n",
"from freqtrade.resolvers import StrategyResolver\n", "from freqtrade.resolvers import StrategyResolver\n",
"strategy = StrategyResolver.load_strategy({'strategy': strategy_name,\n", "strategy = StrategyResolver.load_strategy(config)\n",
" 'user_data_dir': user_data_dir,\n",
" 'strategy_path': strategy_location})\n",
"\n", "\n",
"# Generate buy/sell signals using strategy\n", "# Generate buy/sell signals using strategy\n",
"df = strategy.analyze_ticker(candles, {'pair': pair})\n", "df = strategy.analyze_ticker(candles, {'pair': pair})\n",
@ -137,7 +139,7 @@
"from freqtrade.data.btanalysis import load_backtest_data\n", "from freqtrade.data.btanalysis import load_backtest_data\n",
"\n", "\n",
"# Load backtest results\n", "# Load backtest results\n",
"trades = load_backtest_data(user_data_dir / \"backtest_results/backtest-result.json\")\n", "trades = load_backtest_data(config[\"user_data_dir\"] / \"backtest_results/backtest-result.json\")\n",
"\n", "\n",
"# Show value-counts per pair\n", "# Show value-counts per pair\n",
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()" "trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"

View File

@ -0,0 +1,41 @@
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 200
},
"pair_whitelist": [
"ALGO/BTC",
"ATOM/BTC",
"BAT/BTC",
"BCH/BTC",
"BRD/BTC",
"EOS/BTC",
"ETH/BTC",
"IOTA/BTC",
"LINK/BTC",
"LTC/BTC",
"NEO/BTC",
"NXS/BTC",
"XMR/BTC",
"XRP/BTC",
"XTZ/BTC"
],
"pair_blacklist": [
"BNB/BTC",
"BNB/BUSD",
"BNB/ETH",
"BNB/EUR",
"BNB/NGN",
"BNB/PAX",
"BNB/RUB",
"BNB/TRY",
"BNB/TUSD",
"BNB/USDC",
"BNB/USDS",
"BNB/USDT",
]
}

View File

@ -0,0 +1,31 @@
"order_types": {
"buy": "limit",
"sell": "limit",
"emergencysell": "limit",
"stoploss": "limit",
"stoploss_on_exchange": false
},
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 500
},
"pair_whitelist": [
"ETH/BTC",
"LTC/BTC",
"ETC/BTC",
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"XRP/BTC",
"TRX/BTC",
"ADA/BTC",
"XMR/BTC"
],
"pair_blacklist": [
]
}

View File

@ -0,0 +1,15 @@
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true
},
"pair_whitelist": [
],
"pair_blacklist": [
]
}

View File

@ -0,0 +1,36 @@
"download_trades": true,
"exchange": {
"name": "kraken",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 1000
},
"pair_whitelist": [
"ADA/EUR",
"ATOM/EUR",
"BAT/EUR",
"BCH/EUR",
"BTC/EUR",
"DAI/EUR",
"DASH/EUR",
"EOS/EUR",
"ETC/EUR",
"ETH/EUR",
"LINK/EUR",
"LTC/EUR",
"QTUM/EUR",
"REP/EUR",
"WAVES/EUR",
"XLM/EUR",
"XMR/EUR",
"XRP/EUR",
"XTZ/EUR",
"ZEC/EUR"
],
"pair_blacklist": [
]
}

View File

@ -2,24 +2,70 @@
# Momentum Indicators # Momentum Indicators
# ------------------------------------ # ------------------------------------
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# ADX # ADX
dataframe['adx'] = ta.ADX(dataframe) dataframe['adx'] = ta.ADX(dataframe)
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # Aroon, Aroon Oscillator # # Aroon, Aroon Oscillator
# aroon = ta.AROON(dataframe) # aroon = ta.AROON(dataframe)
# dataframe['aroonup'] = aroon['aroonup'] # dataframe['aroonup'] = aroon['aroonup']
# dataframe['aroondown'] = aroon['aroondown'] # dataframe['aroondown'] = aroon['aroondown']
# dataframe['aroonosc'] = ta.AROONOSC(dataframe) # dataframe['aroonosc'] = ta.AROONOSC(dataframe)
# # Awesome oscillator # # Awesome Oscillator
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# # Commodity Channel Index: values Oversold:<-100, Overbought:>100 # # Keltner Channel
# keltner = qtpylib.keltner_channel(dataframe)
# dataframe["kc_upperband"] = keltner["upper"]
# dataframe["kc_lowerband"] = keltner["lower"]
# dataframe["kc_middleband"] = keltner["mid"]
# dataframe["kc_percent"] = (
# (dataframe["close"] - dataframe["kc_lowerband"]) /
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
# )
# dataframe["kc_width"] = (
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
# )
# # Ultimate Oscillator
# dataframe['uo'] = ta.ULTOSC(dataframe)
# # Commodity Channel Index: values [Oversold:-100, Overbought:100]
# dataframe['cci'] = ta.CCI(dataframe) # dataframe['cci'] = ta.CCI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# # Stochastic Slow
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
# Stochastic Fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# # Stochastic RSI
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
# MACD # MACD
macd = ta.MACD(dataframe) macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd'] dataframe['macd'] = macd['macd']
@ -29,60 +75,57 @@ dataframe['macdhist'] = macd['macdhist']
# MFI # MFI
dataframe['mfi'] = ta.MFI(dataframe) dataframe['mfi'] = ta.MFI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# # ROC # # ROC
# dataframe['roc'] = ta.ROC(dataframe) # dataframe['roc'] = ta.ROC(dataframe)
# # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# # Stoch
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# # Stoch RSI
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
# Overlap Studies # Overlap Studies
# ------------------------------------ # ------------------------------------
# Bollinger bands # Bollinger Bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper'] dataframe['bb_upperband'] = bollinger['upper']
dataframe["bb_percent"] = (
(dataframe["close"] - dataframe["bb_lowerband"]) /
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
)
dataframe["bb_width"] = (
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
)
# Bollinger Bands - Weighted (EMA based instead of SMA)
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
# qtpylib.typical_price(dataframe), window=20, stds=2
# )
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
# dataframe["wbb_percent"] = (
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
# )
# dataframe["wbb_width"] = (
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) / dataframe["wbb_middleband"]
# )
# # EMA - Exponential Moving Average # # EMA - Exponential Moving Average
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# # SMA - Simple Moving Average # # SMA - Simple Moving Average
# dataframe['sma'] = ta.SMA(dataframe, timeperiod=40) # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
# SAR Parabol # Parabolic SAR
dataframe['sar'] = ta.SAR(dataframe) dataframe['sar'] = ta.SAR(dataframe)
# TEMA - Triple Exponential Moving Average # TEMA - Triple Exponential Moving Average
@ -142,7 +185,7 @@ dataframe['htleadsine'] = hilbert['leadsine']
# # Chart type # # Chart type
# # ------------------------------------ # # ------------------------------------
# # Heikinashi stategy # # Heikin Ashi Strategy
# heikinashi = qtpylib.heikinashi(dataframe) # heikinashi = qtpylib.heikinashi(dataframe)
# dataframe['ha_open'] = heikinashi['open'] # dataframe['ha_open'] = heikinashi['open']
# dataframe['ha_close'] = heikinashi['close'] # dataframe['ha_close'] = heikinashi['close']

View File

@ -288,9 +288,9 @@ def rolling_min(series, window=14, min_periods=None):
def rolling_max(series, window=14, min_periods=None): def rolling_max(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods min_periods = window if min_periods is None else min_periods
try: try:
return series.rolling(window=window, min_periods=min_periods).min() return series.rolling(window=window, min_periods=min_periods).max()
except Exception as e: # noqa: F841 except Exception as e: # noqa: F841
return pd.Series(series).rolling(window=window, min_periods=min_periods).min() return pd.Series(series).rolling(window=window, min_periods=min_periods).max()
# --------------------------------------------- # ---------------------------------------------

View File

@ -30,24 +30,21 @@ class Wallets:
self._last_wallet_refresh = 0 self._last_wallet_refresh = 0
self.update() self.update()
def get_free(self, currency) -> float: def get_free(self, currency: str) -> float:
balance = self._wallets.get(currency) balance = self._wallets.get(currency)
if balance and balance.free: if balance and balance.free:
return balance.free return balance.free
else: else:
return 0 return 0
def get_used(self, currency) -> float: def get_used(self, currency: str) -> float:
balance = self._wallets.get(currency) balance = self._wallets.get(currency)
if balance and balance.used: if balance and balance.used:
return balance.used return balance.used
else: else:
return 0 return 0
def get_total(self, currency) -> float: def get_total(self, currency: str) -> float:
balance = self._wallets.get(currency) balance = self._wallets.get(currency)
if balance and balance.total: if balance and balance.total:
return balance.total return balance.total
@ -87,7 +84,6 @@ class Wallets:
self._wallets = _wallets self._wallets = _wallets
def _update_live(self) -> None: def _update_live(self) -> None:
balances = self._exchange.get_balances() balances = self._exchange.get_balances()
for currency in balances: for currency in balances:

View File

@ -4,6 +4,7 @@ Main Freqtrade worker class.
import logging import logging
import time import time
import traceback import traceback
from os import getpid
from typing import Any, Callable, Dict, Optional from typing import Any, Callable, Dict, Optional
import sdnotify import sdnotify
@ -22,16 +23,19 @@ class Worker:
Freqtradebot worker class Freqtradebot worker class
""" """
def __init__(self, args: Dict[str, Any], config=None) -> None: def __init__(self, args: Dict[str, Any], config: Dict[str, Any] = None) -> None:
""" """
Init all variables and objects the bot needs to work Init all variables and objects the bot needs to work
""" """
logger.info('Starting worker %s', __version__) logger.info(f"Starting worker {__version__}")
self._args = args self._args = args
self._config = config self._config = config
self._init(False) self._init(False)
self.last_throttle_start_time: float = 0
self._heartbeat_msg: float = 0
# Tell systemd that we completed initialization phase # Tell systemd that we completed initialization phase
if self._sd_notify: if self._sd_notify:
logger.debug("sd_notify: READY=1") logger.debug("sd_notify: READY=1")
@ -48,22 +52,14 @@ class Worker:
# Init the instance of the bot # Init the instance of the bot
self.freqtrade = FreqtradeBot(self._config) self.freqtrade = FreqtradeBot(self._config)
self._throttle_secs = self._config.get('internals', {}).get( internals_config = self._config.get('internals', {})
'process_throttle_secs', self._throttle_secs = internals_config.get('process_throttle_secs',
constants.PROCESS_THROTTLE_SECS constants.PROCESS_THROTTLE_SECS)
) self._heartbeat_interval = internals_config.get('heartbeat_interval', 60)
self._sd_notify = sdnotify.SystemdNotifier() if \ self._sd_notify = sdnotify.SystemdNotifier() if \
self._config.get('internals', {}).get('sd_notify', False) else None self._config.get('internals', {}).get('sd_notify', False) else None
@property
def state(self) -> State:
return self.freqtrade.state
@state.setter
def state(self, value: State) -> None:
self.freqtrade.state = value
def run(self) -> None: def run(self) -> None:
state = None state = None
while True: while True:
@ -71,31 +67,33 @@ class Worker:
if state == State.RELOAD_CONF: if state == State.RELOAD_CONF:
self._reconfigure() self._reconfigure()
def _worker(self, old_state: Optional[State], throttle_secs: Optional[float] = None) -> State: def _worker(self, old_state: Optional[State]) -> State:
""" """
Trading routine that must be run at each loop The main routine that runs each throttling iteration and handles the states.
:param old_state: the previous service state from the previous call :param old_state: the previous service state from the previous call
:return: current service state :return: current service state
""" """
state = self.freqtrade.state state = self.freqtrade.state
if throttle_secs is None:
throttle_secs = self._throttle_secs
# Log state transition # Log state transition
if state != old_state: if state != old_state:
self.freqtrade.notify_status(f'{state.name.lower()}') self.freqtrade.notify_status(f'{state.name.lower()}')
logger.info('Changing state to: %s', state.name) logger.info(f"Changing state to: {state.name}")
if state == State.RUNNING: if state == State.RUNNING:
self.freqtrade.startup() self.freqtrade.startup()
# Reset heartbeat timestamp to log the heartbeat message at
# first throttling iteration when the state changes
self._heartbeat_msg = 0
if state == State.STOPPED: if state == State.STOPPED:
# Ping systemd watchdog before sleeping in the stopped state # Ping systemd watchdog before sleeping in the stopped state
if self._sd_notify: if self._sd_notify:
logger.debug("sd_notify: WATCHDOG=1\\nSTATUS=State: STOPPED.") logger.debug("sd_notify: WATCHDOG=1\\nSTATUS=State: STOPPED.")
self._sd_notify.notify("WATCHDOG=1\nSTATUS=State: STOPPED.") self._sd_notify.notify("WATCHDOG=1\nSTATUS=State: STOPPED.")
time.sleep(throttle_secs) self._throttle(func=self._process_stopped, throttle_secs=self._throttle_secs)
elif state == State.RUNNING: elif state == State.RUNNING:
# Ping systemd watchdog before throttling # Ping systemd watchdog before throttling
@ -103,28 +101,40 @@ class Worker:
logger.debug("sd_notify: WATCHDOG=1\\nSTATUS=State: RUNNING.") logger.debug("sd_notify: WATCHDOG=1\\nSTATUS=State: RUNNING.")
self._sd_notify.notify("WATCHDOG=1\nSTATUS=State: RUNNING.") self._sd_notify.notify("WATCHDOG=1\nSTATUS=State: RUNNING.")
self._throttle(func=self._process, min_secs=throttle_secs) self._throttle(func=self._process_running, throttle_secs=self._throttle_secs)
if self._heartbeat_interval:
now = time.time()
if (now - self._heartbeat_msg) > self._heartbeat_interval:
logger.info(f"Bot heartbeat. PID={getpid()}, "
f"version='{__version__}', state='{state.name}'")
self._heartbeat_msg = now
return state return state
def _throttle(self, func: Callable[..., Any], min_secs: float, *args, **kwargs) -> Any: def _throttle(self, func: Callable[..., Any], throttle_secs: float, *args, **kwargs) -> Any:
""" """
Throttles the given callable that it Throttles the given callable that it
takes at least `min_secs` to finish execution. takes at least `min_secs` to finish execution.
:param func: Any callable :param func: Any callable
:param min_secs: minimum execution time in seconds :param throttle_secs: throttling interation execution time limit in seconds
:return: Any :return: Any (result of execution of func)
""" """
start = time.time() self.last_throttle_start_time = time.time()
logger.debug("========================================")
result = func(*args, **kwargs) result = func(*args, **kwargs)
end = time.time() time_passed = time.time() - self.last_throttle_start_time
duration = max(min_secs - (end - start), 0.0) sleep_duration = max(throttle_secs - time_passed, 0.0)
logger.debug('Throttling %s for %.2f seconds', func.__name__, duration) logger.debug(f"Throttling with '{func.__name__}()': sleep for {sleep_duration:.2f} s, "
time.sleep(duration) f"last iteration took {time_passed:.2f} s.")
time.sleep(sleep_duration)
return result return result
def _process(self) -> None: def _process_stopped(self) -> None:
logger.debug("========================================") # Maybe do here something in the future...
pass
def _process_running(self) -> None:
try: try:
self.freqtrade.process() self.freqtrade.process()
except TemporaryError as error: except TemporaryError as error:

View File

@ -1,8 +1,8 @@
site_name: Freqtrade site_name: Freqtrade
nav: nav:
- About: index.md - Home: index.md
- Installation: installation.md
- Installation Docker: docker.md - Installation Docker: docker.md
- Installation: installation.md
- Configuration: configuration.md - Configuration: configuration.md
- Strategy Customization: strategy-customization.md - Strategy Customization: strategy-customization.md
- Stoploss: stoploss.md - Stoploss: stoploss.md

View File

@ -1,18 +1,18 @@
# requirements without requirements installable via conda # requirements without requirements installable via conda
# mainly used for Raspberry pi installs # mainly used for Raspberry pi installs
ccxt==1.21.91 ccxt==1.22.95
SQLAlchemy==1.3.13 SQLAlchemy==1.3.13
python-telegram-bot==12.3.0 python-telegram-bot==12.4.2
arrow==0.15.5 arrow==0.15.5
cachetools==4.0.0 cachetools==4.0.0
requests==2.22.0 requests==2.23.0
urllib3==1.25.8 urllib3==1.25.8
wrapt==1.11.2 wrapt==1.12.0
jsonschema==3.2.0 jsonschema==3.2.0
TA-Lib==0.4.17 TA-Lib==0.4.17
tabulate==0.8.6 tabulate==0.8.6
coinmarketcap==5.0.3 coinmarketcap==5.0.3
jinja2==2.10.3 jinja2==2.11.1
# find first, C search in arrays # find first, C search in arrays
py_find_1st==1.1.4 py_find_1st==1.1.4
@ -28,3 +28,6 @@ flask==1.1.1
# Support for colorized terminal output # Support for colorized terminal output
colorama==0.4.3 colorama==0.4.3
# Building config files interactively
questionary==1.5.1
prompt-toolkit==3.0.3

View File

@ -3,12 +3,12 @@
-r requirements-plot.txt -r requirements-plot.txt
-r requirements-hyperopt.txt -r requirements-hyperopt.txt
coveralls==1.10.0 coveralls==1.11.1
flake8==3.7.9 flake8==3.7.9
flake8-type-annotations==0.1.0 flake8-type-annotations==0.1.0
flake8-tidy-imports==4.0.0 flake8-tidy-imports==4.0.0
mypy==0.761 mypy==0.761
pytest==5.3.4 pytest==5.3.5
pytest-asyncio==0.10.0 pytest-asyncio==0.10.0
pytest-cov==2.8.1 pytest-cov==2.8.1
pytest-mock==2.0.0 pytest-mock==2.0.0

View File

@ -4,6 +4,6 @@
# Required for hyperopt # Required for hyperopt
scipy==1.4.1 scipy==1.4.1
scikit-learn==0.22.1 scikit-learn==0.22.1
scikit-optimize==0.5.2 scikit-optimize==0.7.4
filelock==3.0.12 filelock==3.0.12
joblib==0.14.1 joblib==0.14.1

View File

@ -1,5 +1,5 @@
# Include all requirements to run the bot. # Include all requirements to run the bot.
-r requirements.txt -r requirements.txt
plotly==4.5.0 plotly==4.5.1

Some files were not shown because too many files have changed in this diff Show More