Merge branch 'develop' into backtest_live_models
This commit is contained in:
@@ -15,9 +15,9 @@ from freqtrade.commands.db_commands import start_convert_db
|
||||
from freqtrade.commands.deploy_commands import (start_create_userdir, start_install_ui,
|
||||
start_new_strategy)
|
||||
from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hyperopt_show
|
||||
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_markets,
|
||||
start_list_strategies, start_list_timeframes,
|
||||
start_show_trades)
|
||||
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_freqAI_models,
|
||||
start_list_markets, start_list_strategies,
|
||||
start_list_timeframes, start_show_trades)
|
||||
from freqtrade.commands.optimize_commands import (start_backtesting, start_backtesting_show,
|
||||
start_edge, start_hyperopt)
|
||||
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
||||
|
@@ -42,6 +42,8 @@ ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
|
||||
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized",
|
||||
"recursive_strategy_search"]
|
||||
|
||||
ARGS_LIST_FREQAIMODELS = ["freqaimodel_path", "print_one_column", "print_colorized"]
|
||||
|
||||
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]
|
||||
|
||||
ARGS_BACKTEST_SHOW = ["exportfilename", "backtest_show_pair_list"]
|
||||
@@ -107,8 +109,8 @@ ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason
|
||||
"exit_reason_list", "indicator_list"]
|
||||
|
||||
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
|
||||
"list-markets", "list-pairs", "list-strategies", "list-data",
|
||||
"hyperopt-list", "hyperopt-show", "backtest-filter",
|
||||
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",
|
||||
"list-data", "hyperopt-list", "hyperopt-show", "backtest-filter",
|
||||
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv"]
|
||||
|
||||
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
|
||||
@@ -193,10 +195,11 @@ class Arguments:
|
||||
start_create_userdir, start_download_data, start_edge,
|
||||
start_hyperopt, start_hyperopt_list, start_hyperopt_show,
|
||||
start_install_ui, start_list_data, start_list_exchanges,
|
||||
start_list_markets, start_list_strategies,
|
||||
start_list_timeframes, start_new_config, start_new_strategy,
|
||||
start_plot_dataframe, start_plot_profit, start_show_trades,
|
||||
start_test_pairlist, start_trading, start_webserver)
|
||||
start_list_freqAI_models, start_list_markets,
|
||||
start_list_strategies, start_list_timeframes,
|
||||
start_new_config, start_new_strategy, start_plot_dataframe,
|
||||
start_plot_profit, start_show_trades, start_test_pairlist,
|
||||
start_trading, start_webserver)
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='command',
|
||||
# Use custom message when no subhandler is added
|
||||
@@ -363,6 +366,15 @@ class Arguments:
|
||||
list_strategies_cmd.set_defaults(func=start_list_strategies)
|
||||
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
|
||||
|
||||
# Add list-freqAI Models subcommand
|
||||
list_freqaimodels_cmd = subparsers.add_parser(
|
||||
'list-freqaimodels',
|
||||
help='Print available freqAI models.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_freqaimodels_cmd.set_defaults(func=start_list_freqAI_models)
|
||||
self._build_args(optionlist=ARGS_LIST_FREQAIMODELS, parser=list_freqaimodels_cmd)
|
||||
|
||||
# Add list-timeframes subcommand
|
||||
list_timeframes_cmd = subparsers.add_parser(
|
||||
'list-timeframes',
|
||||
|
@@ -1,7 +1,6 @@
|
||||
import csv
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import rapidjson
|
||||
@@ -10,7 +9,6 @@ from colorama import init as colorama_init
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.constants import USERPATH_STRATEGIES
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import market_is_active, validate_exchanges
|
||||
@@ -41,7 +39,7 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
|
||||
print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason']))
|
||||
|
||||
|
||||
def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> None:
|
||||
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
|
||||
if print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
red = Fore.RED
|
||||
@@ -55,7 +53,7 @@ def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> No
|
||||
names = [s['name'] for s in objs]
|
||||
objs_to_print = [{
|
||||
'name': s['name'] if s['name'] else "--",
|
||||
'location': s['location'].relative_to(base_dir),
|
||||
'location': s['location_rel'],
|
||||
'status': (red + "LOAD FAILED" + reset if s['class'] is None
|
||||
else "OK" if names.count(s['name']) == 1
|
||||
else yellow + "DUPLICATE NAME" + reset)
|
||||
@@ -76,9 +74,8 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
|
||||
strategy_objs = StrategyResolver.search_all_objects(
|
||||
directory, not args['print_one_column'], config.get('recursive_strategy_search', False))
|
||||
config, not args['print_one_column'], config.get('recursive_strategy_search', False))
|
||||
# Sort alphabetically
|
||||
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
|
||||
for obj in strategy_objs:
|
||||
@@ -90,7 +87,22 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
|
||||
if args['print_one_column']:
|
||||
print('\n'.join([s['name'] for s in strategy_objs]))
|
||||
else:
|
||||
_print_objs_tabular(strategy_objs, config.get('print_colorized', False), directory)
|
||||
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
|
||||
|
||||
|
||||
def start_list_freqAI_models(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Print files with FreqAI models custom classes available in the directory
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
||||
model_objs = FreqaiModelResolver.search_all_objects(config, not args['print_one_column'])
|
||||
# Sort alphabetically
|
||||
model_objs = sorted(model_objs, key=lambda x: x['name'])
|
||||
if args['print_one_column']:
|
||||
print('\n'.join([s['name'] for s in model_objs]))
|
||||
else:
|
||||
_print_objs_tabular(model_objs, config.get('print_colorized', False))
|
||||
|
||||
|
||||
def start_list_timeframes(args: Dict[str, Any]) -> None:
|
||||
|
@@ -540,6 +540,8 @@ CONF_SCHEMA = {
|
||||
"properties": {
|
||||
"enabled": {"type": "boolean", "default": False},
|
||||
"keras": {"type": "boolean", "default": False},
|
||||
"write_metrics_to_disk": {"type": "boolean", "default": False},
|
||||
"purge_old_models": {"type": "boolean", "default": True},
|
||||
"conv_width": {"type": "integer", "default": 2},
|
||||
"train_period_days": {"type": "integer", "default": 0},
|
||||
"backtest_period_days": {"type": "number", "default": 7},
|
||||
|
@@ -410,11 +410,13 @@ class Exchange:
|
||||
else:
|
||||
return DataFrame()
|
||||
|
||||
def get_contract_size(self, pair: str) -> float:
|
||||
def get_contract_size(self, pair: str) -> Optional[float]:
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
market = self.markets[pair]
|
||||
market = self.markets.get(pair, {})
|
||||
contract_size: float = 1.0
|
||||
if market['contractSize'] is not None:
|
||||
if not market:
|
||||
return None
|
||||
if market.get('contractSize') is not None:
|
||||
# ccxt has contractSize in markets as string
|
||||
contract_size = float(market['contractSize'])
|
||||
return contract_size
|
||||
@@ -1934,6 +1936,7 @@ class Exchange:
|
||||
candle_limit = self.ohlcv_candle_limit(timeframe, self._config['candle_type_def'])
|
||||
# Age out old candles
|
||||
ohlcv_df = ohlcv_df.tail(candle_limit + self._startup_candle_count)
|
||||
ohlcv_df = ohlcv_df.reset_index(drop=True)
|
||||
self._klines[(pair, timeframe, c_type)] = ohlcv_df
|
||||
else:
|
||||
self._klines[(pair, timeframe, c_type)] = ohlcv_df
|
||||
|
@@ -1,14 +1,15 @@
|
||||
import collections
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
import threading
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Tuple, TypedDict
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import psutil
|
||||
import rapidjson
|
||||
from joblib import dump, load
|
||||
from joblib.externals import cloudpickle
|
||||
@@ -65,6 +66,8 @@ class FreqaiDataDrawer:
|
||||
self.pair_dict: Dict[str, pair_info] = {}
|
||||
# dictionary holding all actively inferenced models in memory given a model filename
|
||||
self.model_dictionary: Dict[str, Any] = {}
|
||||
# all additional metadata that we want to keep in ram
|
||||
self.meta_data_dictionary: Dict[str, Dict[str, Any]] = {}
|
||||
self.model_return_values: Dict[str, DataFrame] = {}
|
||||
self.historic_data: Dict[str, Dict[str, DataFrame]] = {}
|
||||
self.historic_predictions: Dict[str, DataFrame] = {}
|
||||
@@ -78,30 +81,60 @@ class FreqaiDataDrawer:
|
||||
self.historic_predictions_bkp_path = Path(
|
||||
self.full_path / "historic_predictions.backup.pkl")
|
||||
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
|
||||
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
|
||||
self.follow_mode = follow_mode
|
||||
if follow_mode:
|
||||
self.create_follower_dict()
|
||||
self.load_drawer_from_disk()
|
||||
self.load_historic_predictions_from_disk()
|
||||
self.load_metric_tracker_from_disk()
|
||||
self.training_queue: Dict[str, int] = {}
|
||||
self.history_lock = threading.Lock()
|
||||
self.save_lock = threading.Lock()
|
||||
self.pair_dict_lock = threading.Lock()
|
||||
self.metric_tracker_lock = threading.Lock()
|
||||
self.old_DBSCAN_eps: Dict[str, float] = {}
|
||||
self.empty_pair_dict: pair_info = {
|
||||
"model_filename": "", "trained_timestamp": 0,
|
||||
"data_path": "", "extras": {}}
|
||||
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
|
||||
|
||||
def update_metric_tracker(self, metric: str, value: float, pair: str) -> None:
|
||||
"""
|
||||
General utility for adding and updating custom metrics. Typically used
|
||||
for adding training performance, train timings, inferenc timings, cpu loads etc.
|
||||
"""
|
||||
with self.metric_tracker_lock:
|
||||
if pair not in self.metric_tracker:
|
||||
self.metric_tracker[pair] = {}
|
||||
if metric not in self.metric_tracker[pair]:
|
||||
self.metric_tracker[pair][metric] = {'timestamp': [], 'value': []}
|
||||
|
||||
timestamp = int(datetime.now(timezone.utc).timestamp())
|
||||
self.metric_tracker[pair][metric]['value'].append(value)
|
||||
self.metric_tracker[pair][metric]['timestamp'].append(timestamp)
|
||||
|
||||
def collect_metrics(self, time_spent: float, pair: str):
|
||||
"""
|
||||
Add metrics to the metric tracker dictionary
|
||||
"""
|
||||
load1, load5, load15 = psutil.getloadavg()
|
||||
cpus = psutil.cpu_count()
|
||||
self.update_metric_tracker('train_time', time_spent, pair)
|
||||
self.update_metric_tracker('cpu_load1min', load1 / cpus, pair)
|
||||
self.update_metric_tracker('cpu_load5min', load5 / cpus, pair)
|
||||
self.update_metric_tracker('cpu_load15min', load15 / cpus, pair)
|
||||
|
||||
def load_drawer_from_disk(self):
|
||||
"""
|
||||
Locate and load a previously saved data drawer full of all pair model metadata in
|
||||
present model folder.
|
||||
:return: bool - whether or not the drawer was located
|
||||
Load any existing metric tracker that may be present.
|
||||
"""
|
||||
exists = self.pair_dictionary_path.is_file()
|
||||
if exists:
|
||||
with open(self.pair_dictionary_path, "r") as fp:
|
||||
self.pair_dict = json.load(fp)
|
||||
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
elif not self.follow_mode:
|
||||
logger.info("Could not find existing datadrawer, starting from scratch")
|
||||
else:
|
||||
@@ -110,7 +143,18 @@ class FreqaiDataDrawer:
|
||||
"sending null values back to strategy"
|
||||
)
|
||||
|
||||
return exists
|
||||
def load_metric_tracker_from_disk(self):
|
||||
"""
|
||||
Tries to load an existing metrics dictionary if the user
|
||||
wants to collect metrics.
|
||||
"""
|
||||
if self.freqai_info.get('write_metrics_to_disk', False):
|
||||
exists = self.metric_tracker_path.is_file()
|
||||
if exists:
|
||||
with open(self.metric_tracker_path, "r") as fp:
|
||||
self.metric_tracker = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
else:
|
||||
logger.info("Could not find existing metric tracker, starting from scratch")
|
||||
|
||||
def load_historic_predictions_from_disk(self):
|
||||
"""
|
||||
@@ -146,7 +190,7 @@ class FreqaiDataDrawer:
|
||||
|
||||
def save_historic_predictions_to_disk(self):
|
||||
"""
|
||||
Save data drawer full of all pair model metadata in present model folder.
|
||||
Save historic predictions pickle to disk
|
||||
"""
|
||||
with open(self.historic_predictions_path, "wb") as fp:
|
||||
cloudpickle.dump(self.historic_predictions, fp, protocol=cloudpickle.DEFAULT_PROTOCOL)
|
||||
@@ -154,6 +198,15 @@ class FreqaiDataDrawer:
|
||||
# create a backup
|
||||
shutil.copy(self.historic_predictions_path, self.historic_predictions_bkp_path)
|
||||
|
||||
def save_metric_tracker_to_disk(self):
|
||||
"""
|
||||
Save metric tracker of all pair metrics collected.
|
||||
"""
|
||||
with self.save_lock:
|
||||
with open(self.metric_tracker_path, 'w') as fp:
|
||||
rapidjson.dump(self.metric_tracker, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def save_drawer_to_disk(self):
|
||||
"""
|
||||
Save data drawer full of all pair model metadata in present model folder.
|
||||
@@ -453,9 +506,14 @@ class FreqaiDataDrawer:
|
||||
)
|
||||
|
||||
# if self.live:
|
||||
# store as much in ram as possible to increase performance
|
||||
self.model_dictionary[coin] = model
|
||||
self.pair_dict[coin]["model_filename"] = dk.model_filename
|
||||
self.pair_dict[coin]["data_path"] = str(dk.data_path)
|
||||
if coin not in self.meta_data_dictionary:
|
||||
self.meta_data_dictionary[coin] = {}
|
||||
self.meta_data_dictionary[coin]["train_df"] = dk.data_dictionary["train_features"]
|
||||
self.meta_data_dictionary[coin]["meta_data"] = dk.data
|
||||
self.save_drawer_to_disk()
|
||||
|
||||
return
|
||||
@@ -466,7 +524,7 @@ class FreqaiDataDrawer:
|
||||
presaved backtesting (prediction file loading).
|
||||
"""
|
||||
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
|
||||
dk.data = json.load(fp)
|
||||
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
dk.training_features_list = dk.data["training_features_list"]
|
||||
dk.label_list = dk.data["label_list"]
|
||||
|
||||
@@ -492,14 +550,19 @@ class FreqaiDataDrawer:
|
||||
/ dk.data_path.parts[-1]
|
||||
)
|
||||
|
||||
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
|
||||
dk.data = json.load(fp)
|
||||
dk.training_features_list = dk.data["training_features_list"]
|
||||
dk.label_list = dk.data["label_list"]
|
||||
if coin in self.meta_data_dictionary:
|
||||
dk.data = self.meta_data_dictionary[coin]["meta_data"]
|
||||
dk.data_dictionary["train_features"] = self.meta_data_dictionary[coin]["train_df"]
|
||||
else:
|
||||
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
|
||||
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
dk.data_dictionary["train_features"] = pd.read_pickle(
|
||||
dk.data_path / f"{dk.model_filename}_trained_df.pkl"
|
||||
)
|
||||
dk.data_dictionary["train_features"] = pd.read_pickle(
|
||||
dk.data_path / f"{dk.model_filename}_trained_df.pkl"
|
||||
)
|
||||
|
||||
dk.training_features_list = dk.data["training_features_list"]
|
||||
dk.label_list = dk.data["label_list"]
|
||||
|
||||
# try to access model in memory instead of loading object from disk to save time
|
||||
if dk.live and coin in self.model_dictionary:
|
||||
@@ -627,22 +690,3 @@ class FreqaiDataDrawer:
|
||||
).reset_index(drop=True)
|
||||
|
||||
return corr_dataframes, base_dataframes
|
||||
|
||||
# to be used if we want to send predictions directly to the follower instead of forcing
|
||||
# follower to load models and inference
|
||||
# def save_model_return_values_to_disk(self) -> None:
|
||||
# with open(self.full_path / str('model_return_values.json'), "w") as fp:
|
||||
# json.dump(self.model_return_values, fp, default=self.np_encoder)
|
||||
|
||||
# def load_model_return_values_from_disk(self, dk: FreqaiDataKitchen) -> FreqaiDataKitchen:
|
||||
# exists = Path(self.full_path / str('model_return_values.json')).resolve().exists()
|
||||
# if exists:
|
||||
# with open(self.full_path / str('model_return_values.json'), "r") as fp:
|
||||
# self.model_return_values = json.load(fp)
|
||||
# elif not self.follow_mode:
|
||||
# logger.info("Could not find existing datadrawer, starting from scratch")
|
||||
# else:
|
||||
# logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
|
||||
# 'sending null values back to strategy')
|
||||
|
||||
# return exists, dk
|
||||
|
@@ -7,7 +7,7 @@ from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from threading import Lock
|
||||
from typing import Any, Dict, List, Tuple
|
||||
from typing import Any, Dict, List, Literal, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -148,7 +148,7 @@ class IFreqaiModel(ABC):
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
self.clean_up()
|
||||
if self.live:
|
||||
self.inference_timer('stop')
|
||||
self.inference_timer('stop', metadata["pair"])
|
||||
return dataframe
|
||||
|
||||
def clean_up(self):
|
||||
@@ -217,12 +217,14 @@ class IFreqaiModel(ABC):
|
||||
logger.warning(f"Training {pair} raised exception {msg.__class__.__name__}. "
|
||||
f"Message: {msg}, skipping.")
|
||||
|
||||
self.train_timer('stop')
|
||||
self.train_timer('stop', pair)
|
||||
|
||||
# only rotate the queue after the first has been trained.
|
||||
self.train_queue.rotate(-1)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
if self.freqai_info.get('write_metrics_to_disk', False):
|
||||
self.dd.save_metric_tracker_to_disk()
|
||||
|
||||
def start_backtesting(
|
||||
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
|
||||
@@ -677,7 +679,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return
|
||||
|
||||
def inference_timer(self, do='start'):
|
||||
def inference_timer(self, do: Literal['start', 'stop'] = 'start', pair: str = ''):
|
||||
"""
|
||||
Timer designed to track the cumulative time spent in FreqAI for one pass through
|
||||
the whitelist. This will check if the time spent is more than 1/4 the time
|
||||
@@ -688,7 +690,10 @@ class IFreqaiModel(ABC):
|
||||
self.begin_time = time.time()
|
||||
elif do == 'stop':
|
||||
end = time.time()
|
||||
self.inference_time += (end - self.begin_time)
|
||||
time_spent = (end - self.begin_time)
|
||||
if self.freqai_info.get('write_metrics_to_disk', False):
|
||||
self.dd.update_metric_tracker('inference_time', time_spent, pair)
|
||||
self.inference_time += time_spent
|
||||
if self.pair_it == self.total_pairs:
|
||||
logger.info(
|
||||
f'Total time spent inferencing pairlist {self.inference_time:.2f} seconds')
|
||||
@@ -699,7 +704,7 @@ class IFreqaiModel(ABC):
|
||||
self.inference_time = 0
|
||||
return
|
||||
|
||||
def train_timer(self, do='start'):
|
||||
def train_timer(self, do: Literal['start', 'stop'] = 'start', pair: str = ''):
|
||||
"""
|
||||
Timer designed to track the cumulative time spent training the full pairlist in
|
||||
FreqAI.
|
||||
@@ -709,7 +714,11 @@ class IFreqaiModel(ABC):
|
||||
self.begin_time_train = time.time()
|
||||
elif do == 'stop':
|
||||
end = time.time()
|
||||
self.train_time += (end - self.begin_time_train)
|
||||
time_spent = (end - self.begin_time_train)
|
||||
if self.freqai_info.get('write_metrics_to_disk', False):
|
||||
self.dd.collect_metrics(time_spent, pair)
|
||||
|
||||
self.train_time += time_spent
|
||||
if self.pair_it_train == self.total_pairs:
|
||||
logger.info(
|
||||
f'Total time spent training pairlist {self.train_time:.2f} seconds')
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
@@ -30,6 +31,14 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
label=data_dictionary["train_labels"],
|
||||
weight=data_dictionary["train_weights"],
|
||||
)
|
||||
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
||||
test_data = None
|
||||
else:
|
||||
test_data = Pool(
|
||||
data=data_dictionary["test_features"],
|
||||
label=data_dictionary["test_labels"],
|
||||
weight=data_dictionary["test_weights"],
|
||||
)
|
||||
|
||||
cbr = CatBoostClassifier(
|
||||
allow_writing_files=True,
|
||||
@@ -40,6 +49,7 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
cbr.fit(train_data, init_model=init_model)
|
||||
cbr.fit(X=train_data, eval_set=test_data, init_model=init_model,
|
||||
log_cout=sys.stdout, log_cerr=sys.stderr)
|
||||
|
||||
return cbr
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
@@ -47,6 +48,7 @@ class CatboostRegressor(BaseRegressionModel):
|
||||
**self.model_training_parameters,
|
||||
)
|
||||
|
||||
model.fit(X=train_data, eval_set=test_data, init_model=init_model)
|
||||
model.fit(X=train_data, eval_set=test_data, init_model=init_model,
|
||||
log_cout=sys.stdout, log_cerr=sys.stderr)
|
||||
|
||||
return model
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
@@ -58,8 +59,10 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
|
||||
|
||||
fit_params = []
|
||||
for i in range(len(eval_sets)):
|
||||
fit_params.append(
|
||||
{'eval_set': eval_sets[i], 'init_model': init_models[i]})
|
||||
fit_params.append({
|
||||
'eval_set': eval_sets[i], 'init_model': init_models[i],
|
||||
'log_cout': sys.stdout, 'log_cerr': sys.stderr,
|
||||
})
|
||||
|
||||
model = FreqaiMultiOutputRegressor(estimator=cbr)
|
||||
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
|
||||
|
85
freqtrade/freqai/prediction_models/XGBoostRFClassifier.py
Normal file
85
freqtrade/freqai/prediction_models/XGBoostRFClassifier.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from pandas.api.types import is_integer_dtype
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from xgboost import XGBRFClassifier
|
||||
|
||||
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class XGBoostRFClassifier(BaseClassifierModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
X = data_dictionary["train_features"].to_numpy()
|
||||
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
||||
|
||||
le = LabelEncoder()
|
||||
if not is_integer_dtype(y):
|
||||
y = pd.Series(le.fit_transform(y), dtype="int64")
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
|
||||
eval_set = None
|
||||
else:
|
||||
test_features = data_dictionary["test_features"].to_numpy()
|
||||
test_labels = data_dictionary["test_labels"].to_numpy()[:, 0]
|
||||
|
||||
if not is_integer_dtype(test_labels):
|
||||
test_labels = pd.Series(le.transform(test_labels), dtype="int64")
|
||||
|
||||
eval_set = [(test_features, test_labels)]
|
||||
|
||||
train_weights = data_dictionary["train_weights"]
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
model = XGBRFClassifier(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||
xgb_model=init_model)
|
||||
|
||||
return model
|
||||
|
||||
def predict(
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_df: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
(pred_df, dk.do_predict) = super().predict(unfiltered_df, dk, **kwargs)
|
||||
|
||||
le = LabelEncoder()
|
||||
label = dk.label_list[0]
|
||||
labels_before = list(dk.data['labels_std'].keys())
|
||||
labels_after = le.fit_transform(labels_before).tolist()
|
||||
pred_df[label] = le.inverse_transform(pred_df[label])
|
||||
pred_df = pred_df.rename(
|
||||
columns={labels_after[i]: labels_before[i] for i in range(len(labels_before))})
|
||||
|
||||
return (pred_df, dk.do_predict)
|
45
freqtrade/freqai/prediction_models/XGBoostRFRegressor.py
Normal file
45
freqtrade/freqai/prediction_models/XGBoostRFRegressor.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from xgboost import XGBRFRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class XGBoostRFRegressor(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
|
||||
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
||||
eval_set = None
|
||||
else:
|
||||
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
|
||||
eval_weights = [data_dictionary['test_weights']]
|
||||
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
xgb_model = self.get_init_model(dk.pair)
|
||||
|
||||
model = XGBRFRegressor(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set,
|
||||
sample_weight_eval_set=eval_weights, xgb_model=xgb_model)
|
||||
|
||||
return model
|
@@ -155,6 +155,8 @@ class Backtesting:
|
||||
self.trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
|
||||
# strategies which define "can_short=True" will fail to load in Spot mode.
|
||||
self._can_short = self.trading_mode != TradingMode.SPOT
|
||||
self._position_stacking: bool = self.config.get('position_stacking', False)
|
||||
self.enable_protections: bool = self.config.get('enable_protections', False)
|
||||
|
||||
self.init_backtest()
|
||||
|
||||
@@ -923,30 +925,23 @@ class Backtesting:
|
||||
return trade
|
||||
|
||||
def handle_left_open(self, open_trades: Dict[str, List[LocalTrade]],
|
||||
data: Dict[str, List[Tuple]]) -> List[LocalTrade]:
|
||||
data: Dict[str, List[Tuple]]) -> None:
|
||||
"""
|
||||
Handling of left open trades at the end of backtesting
|
||||
"""
|
||||
trades = []
|
||||
for pair in open_trades.keys():
|
||||
if len(open_trades[pair]) > 0:
|
||||
for trade in open_trades[pair]:
|
||||
if trade.open_order_id and trade.nr_of_successful_entries == 0:
|
||||
# Ignore trade if entry-order did not fill yet
|
||||
continue
|
||||
exit_row = data[pair][-1]
|
||||
self._exit_trade(trade, exit_row, exit_row[OPEN_IDX], trade.amount)
|
||||
trade.orders[-1].close_bt_order(exit_row[DATE_IDX].to_pydatetime(), trade)
|
||||
for trade in list(open_trades[pair]):
|
||||
if trade.open_order_id and trade.nr_of_successful_entries == 0:
|
||||
# Ignore trade if entry-order did not fill yet
|
||||
continue
|
||||
exit_row = data[pair][-1]
|
||||
self._exit_trade(trade, exit_row, exit_row[OPEN_IDX], trade.amount)
|
||||
trade.orders[-1].close_bt_order(exit_row[DATE_IDX].to_pydatetime(), trade)
|
||||
|
||||
trade.close_date = exit_row[DATE_IDX].to_pydatetime()
|
||||
trade.exit_reason = ExitType.FORCE_EXIT.value
|
||||
trade.close(exit_row[OPEN_IDX], show_msg=False)
|
||||
LocalTrade.close_bt_trade(trade)
|
||||
# Deepcopy object to have wallets update correctly
|
||||
trade1 = deepcopy(trade)
|
||||
trade1.is_open = True
|
||||
trades.append(trade1)
|
||||
return trades
|
||||
trade.close_date = exit_row[DATE_IDX].to_pydatetime()
|
||||
trade.exit_reason = ExitType.FORCE_EXIT.value
|
||||
trade.close(exit_row[OPEN_IDX], show_msg=False)
|
||||
LocalTrade.close_bt_trade(trade)
|
||||
|
||||
def trade_slot_available(self, max_open_trades: int, open_trade_count: int) -> bool:
|
||||
# Always allow trades when max_open_trades is enabled.
|
||||
@@ -970,9 +965,8 @@ class Backtesting:
|
||||
return 'short'
|
||||
return None
|
||||
|
||||
def run_protections(
|
||||
self, enable_protections, pair: str, current_time: datetime, side: LongShort):
|
||||
if enable_protections:
|
||||
def run_protections(self, pair: str, current_time: datetime, side: LongShort):
|
||||
if self.enable_protections:
|
||||
self.protections.stop_per_pair(pair, current_time, side)
|
||||
self.protections.global_stop(current_time, side)
|
||||
|
||||
@@ -1078,10 +1072,78 @@ class Backtesting:
|
||||
return None
|
||||
return row
|
||||
|
||||
def backtest(self, processed: Dict, # noqa: max-complexity: 13
|
||||
def backtest_loop(
|
||||
self, row: Tuple, pair: str, current_time: datetime, end_date: datetime,
|
||||
max_open_trades: int, open_trade_count_start: int) -> int:
|
||||
"""
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
|
||||
Backtesting processing for one candle/pair.
|
||||
"""
|
||||
for t in list(LocalTrade.bt_trades_open_pp[pair]):
|
||||
# 1. Manage currently open orders of active trades
|
||||
if self.manage_open_orders(t, current_time, row):
|
||||
# Close trade
|
||||
open_trade_count_start -= 1
|
||||
LocalTrade.remove_bt_trade(t)
|
||||
self.wallets.update()
|
||||
|
||||
# 2. Process entries.
|
||||
# without positionstacking, we can only have one open trade per pair.
|
||||
# max_open_trades must be respected
|
||||
# don't open on the last row
|
||||
trade_dir = self.check_for_trade_entry(row)
|
||||
if (
|
||||
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
|
||||
and self.trade_slot_available(max_open_trades, open_trade_count_start)
|
||||
and current_time != end_date
|
||||
and trade_dir is not None
|
||||
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
|
||||
):
|
||||
trade = self._enter_trade(pair, row, trade_dir)
|
||||
if trade:
|
||||
# TODO: hacky workaround to avoid opening > max_open_trades
|
||||
# This emulates previous behavior - not sure if this is correct
|
||||
# Prevents entering if the trade-slot was freed in this candle
|
||||
open_trade_count_start += 1
|
||||
# logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
|
||||
LocalTrade.add_bt_trade(trade)
|
||||
self.wallets.update()
|
||||
|
||||
for trade in list(LocalTrade.bt_trades_open_pp[pair]):
|
||||
# 3. Process entry orders.
|
||||
order = trade.select_order(trade.entry_side, is_open=True)
|
||||
if order and self._get_order_filled(order.price, row):
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.open_order_id = None
|
||||
self.wallets.update()
|
||||
|
||||
# 4. Create exit orders (if any)
|
||||
if not trade.open_order_id:
|
||||
self._get_exit_trade_entry(trade, row) # Place exit order if necessary
|
||||
|
||||
# 5. Process exit orders.
|
||||
order = trade.select_order(trade.exit_side, is_open=True)
|
||||
if order and self._get_order_filled(order.price, row):
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.open_order_id = None
|
||||
sub_trade = order.safe_amount_after_fee != trade.amount
|
||||
if sub_trade:
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.recalc_trade_from_orders()
|
||||
else:
|
||||
trade.close_date = current_time
|
||||
trade.close(order.price, show_msg=False)
|
||||
|
||||
# logger.debug(f"{pair} - Backtesting exit {trade}")
|
||||
LocalTrade.close_bt_trade(trade)
|
||||
self.wallets.update()
|
||||
self.run_protections(pair, current_time, trade.trade_direction)
|
||||
return open_trade_count_start
|
||||
|
||||
def backtest(self, processed: Dict,
|
||||
start_date: datetime, end_date: datetime,
|
||||
max_open_trades: int = 0, position_stacking: bool = False,
|
||||
enable_protections: bool = False) -> Dict[str, Any]:
|
||||
max_open_trades: int = 0) -> Dict[str, Any]:
|
||||
"""
|
||||
Implement backtesting functionality
|
||||
|
||||
@@ -1094,12 +1156,9 @@ class Backtesting:
|
||||
:param start_date: backtesting timerange start datetime
|
||||
:param end_date: backtesting timerange end datetime
|
||||
:param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
|
||||
:param position_stacking: do we allow position stacking?
|
||||
:param enable_protections: Should protections be enabled?
|
||||
:return: DataFrame with trades (results of backtesting)
|
||||
"""
|
||||
trades: List[LocalTrade] = []
|
||||
self.prepare_backtest(enable_protections)
|
||||
self.prepare_backtest(self.enable_protections)
|
||||
# Ensure wallets are uptodate (important for --strategy-list)
|
||||
self.wallets.update()
|
||||
# Use dict of lists with data for performance
|
||||
@@ -1110,15 +1169,12 @@ class Backtesting:
|
||||
indexes: Dict = defaultdict(int)
|
||||
current_time = start_date + timedelta(minutes=self.timeframe_min)
|
||||
|
||||
open_trades: Dict[str, List[LocalTrade]] = defaultdict(list)
|
||||
open_trade_count = 0
|
||||
|
||||
self.progress.init_step(BacktestState.BACKTEST, int(
|
||||
(end_date - start_date) / timedelta(minutes=self.timeframe_min)))
|
||||
|
||||
# Loop timerange and get candle for each pair at that point in time
|
||||
while current_time <= end_date:
|
||||
open_trade_count_start = open_trade_count
|
||||
open_trade_count_start = LocalTrade.bt_open_open_trade_count
|
||||
self.check_abort()
|
||||
for i, pair in enumerate(data):
|
||||
row_index = indexes[pair]
|
||||
@@ -1130,81 +1186,17 @@ class Backtesting:
|
||||
indexes[pair] = row_index
|
||||
self.dataprovider._set_dataframe_max_index(row_index)
|
||||
|
||||
for t in list(open_trades[pair]):
|
||||
# 1. Manage currently open orders of active trades
|
||||
if self.manage_open_orders(t, current_time, row):
|
||||
# Close trade
|
||||
open_trade_count -= 1
|
||||
open_trades[pair].remove(t)
|
||||
LocalTrade.trades_open.remove(t)
|
||||
self.wallets.update()
|
||||
|
||||
# 2. Process entries.
|
||||
# without positionstacking, we can only have one open trade per pair.
|
||||
# max_open_trades must be respected
|
||||
# don't open on the last row
|
||||
trade_dir = self.check_for_trade_entry(row)
|
||||
if (
|
||||
(position_stacking or len(open_trades[pair]) == 0)
|
||||
and self.trade_slot_available(max_open_trades, open_trade_count_start)
|
||||
and current_time != end_date
|
||||
and trade_dir is not None
|
||||
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
|
||||
):
|
||||
trade = self._enter_trade(pair, row, trade_dir)
|
||||
if trade:
|
||||
# TODO: hacky workaround to avoid opening > max_open_trades
|
||||
# This emulates previous behavior - not sure if this is correct
|
||||
# Prevents entering if the trade-slot was freed in this candle
|
||||
open_trade_count_start += 1
|
||||
open_trade_count += 1
|
||||
# logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
|
||||
open_trades[pair].append(trade)
|
||||
LocalTrade.add_bt_trade(trade)
|
||||
self.wallets.update()
|
||||
|
||||
for trade in list(open_trades[pair]):
|
||||
# 3. Process entry orders.
|
||||
order = trade.select_order(trade.entry_side, is_open=True)
|
||||
if order and self._get_order_filled(order.price, row):
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.open_order_id = None
|
||||
self.wallets.update()
|
||||
|
||||
# 4. Create exit orders (if any)
|
||||
if not trade.open_order_id:
|
||||
self._get_exit_trade_entry(trade, row) # Place exit order if necessary
|
||||
|
||||
# 5. Process exit orders.
|
||||
order = trade.select_order(trade.exit_side, is_open=True)
|
||||
if order and self._get_order_filled(order.price, row):
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.open_order_id = None
|
||||
sub_trade = order.safe_amount_after_fee != trade.amount
|
||||
if sub_trade:
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.recalc_trade_from_orders()
|
||||
else:
|
||||
trade.close_date = current_time
|
||||
trade.close(order.price, show_msg=False)
|
||||
|
||||
# logger.debug(f"{pair} - Backtesting exit {trade}")
|
||||
open_trade_count -= 1
|
||||
open_trades[pair].remove(trade)
|
||||
LocalTrade.close_bt_trade(trade)
|
||||
trades.append(trade)
|
||||
self.wallets.update()
|
||||
self.run_protections(
|
||||
enable_protections, pair, current_time, trade.trade_direction)
|
||||
open_trade_count_start = self.backtest_loop(
|
||||
row, pair, current_time, end_date, max_open_trades, open_trade_count_start)
|
||||
|
||||
# Move time one configured time_interval ahead.
|
||||
self.progress.increment()
|
||||
current_time += timedelta(minutes=self.timeframe_min)
|
||||
|
||||
trades += self.handle_left_open(open_trades, data=data)
|
||||
self.handle_left_open(LocalTrade.bt_trades_open_pp, data=data)
|
||||
self.wallets.update()
|
||||
|
||||
results = trade_list_to_dataframe(trades)
|
||||
results = trade_list_to_dataframe(LocalTrade.trades)
|
||||
return {
|
||||
'results': results,
|
||||
'config': self.strategy.config,
|
||||
@@ -1257,8 +1249,6 @@ class Backtesting:
|
||||
start_date=min_date,
|
||||
end_date=max_date,
|
||||
max_open_trades=max_open_trades,
|
||||
position_stacking=self.config.get('position_stacking', False),
|
||||
enable_protections=self.config.get('enable_protections', False),
|
||||
)
|
||||
backtest_end_time = datetime.now(timezone.utc)
|
||||
results.update({
|
||||
|
@@ -122,7 +122,6 @@ class Hyperopt:
|
||||
else:
|
||||
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||
self.max_open_trades = 0
|
||||
self.position_stacking = self.config.get('position_stacking', False)
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'sell'):
|
||||
# Make sure use_exit_signal is enabled
|
||||
@@ -258,6 +257,7 @@ class Hyperopt:
|
||||
logger.debug("Hyperopt has 'protection' space")
|
||||
# Enable Protections if protection space is selected.
|
||||
self.config['enable_protections'] = True
|
||||
self.backtesting.enable_protections = True
|
||||
self.protection_space = self.custom_hyperopt.protection_space()
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'buy'):
|
||||
@@ -339,8 +339,6 @@ class Hyperopt:
|
||||
start_date=self.min_date,
|
||||
end_date=self.max_date,
|
||||
max_open_trades=self.max_open_trades,
|
||||
position_stacking=self.position_stacking,
|
||||
enable_protections=self.config.get('enable_protections', False),
|
||||
)
|
||||
backtest_end_time = datetime.now(timezone.utc)
|
||||
bt_results.update({
|
||||
|
@@ -12,7 +12,7 @@ import tabulate
|
||||
from colorama import Fore, Style
|
||||
from pandas import isna, json_normalize
|
||||
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES, Config
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, Config
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
|
||||
@@ -50,9 +50,8 @@ class HyperoptTools():
|
||||
Get Strategy-location (filename) from strategy_name
|
||||
"""
|
||||
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
||||
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
|
||||
strategy_objs = StrategyResolver.search_all_objects(
|
||||
directory, False, config.get('recursive_strategy_search', False))
|
||||
config, False, config.get('recursive_strategy_search', False))
|
||||
strategies = [s for s in strategy_objs if s['name'] == strategy_name]
|
||||
if strategies:
|
||||
strategy = strategies[0]
|
||||
|
@@ -408,10 +408,10 @@ def generate_strategy_stats(pairlist: List[str],
|
||||
|
||||
exit_reason_stats = generate_exit_reason_stats(max_open_trades=max_open_trades,
|
||||
results=results)
|
||||
left_open_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
|
||||
starting_balance=start_balance,
|
||||
results=results.loc[results['is_open']],
|
||||
skip_nan=True)
|
||||
left_open_results = generate_pair_metrics(
|
||||
pairlist, stake_currency=stake_currency, starting_balance=start_balance,
|
||||
results=results.loc[results['exit_reason'] == 'force_exit'], skip_nan=True)
|
||||
|
||||
daily_stats = generate_daily_stats(results)
|
||||
trade_stats = generate_trading_stats(results)
|
||||
best_pair = max([pair for pair in pair_results if pair['key'] != 'TOTAL'],
|
||||
|
@@ -2,6 +2,7 @@
|
||||
This module contains the class to persist trades into SQLite
|
||||
"""
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from math import isclose
|
||||
from typing import Any, Dict, List, Optional
|
||||
@@ -255,6 +256,9 @@ class LocalTrade():
|
||||
# Trades container for backtesting
|
||||
trades: List['LocalTrade'] = []
|
||||
trades_open: List['LocalTrade'] = []
|
||||
# Copy of trades_open - but indexed by pair
|
||||
bt_trades_open_pp: Dict[str, List['LocalTrade']] = defaultdict(list)
|
||||
bt_open_open_trade_count: int = 0
|
||||
total_profit: float = 0
|
||||
realized_profit: float = 0
|
||||
|
||||
@@ -538,6 +542,8 @@ class LocalTrade():
|
||||
"""
|
||||
LocalTrade.trades = []
|
||||
LocalTrade.trades_open = []
|
||||
LocalTrade.bt_trades_open_pp = defaultdict(list)
|
||||
LocalTrade.bt_open_open_trade_count = 0
|
||||
LocalTrade.total_profit = 0
|
||||
|
||||
def adjust_min_max_rates(self, current_price: float, current_price_low: float) -> None:
|
||||
@@ -1067,6 +1073,8 @@ class LocalTrade():
|
||||
@staticmethod
|
||||
def close_bt_trade(trade):
|
||||
LocalTrade.trades_open.remove(trade)
|
||||
LocalTrade.bt_trades_open_pp[trade.pair].remove(trade)
|
||||
LocalTrade.bt_open_open_trade_count -= 1
|
||||
LocalTrade.trades.append(trade)
|
||||
LocalTrade.total_profit += trade.close_profit_abs
|
||||
|
||||
@@ -1074,9 +1082,17 @@ class LocalTrade():
|
||||
def add_bt_trade(trade):
|
||||
if trade.is_open:
|
||||
LocalTrade.trades_open.append(trade)
|
||||
LocalTrade.bt_trades_open_pp[trade.pair].append(trade)
|
||||
LocalTrade.bt_open_open_trade_count += 1
|
||||
else:
|
||||
LocalTrade.trades.append(trade)
|
||||
|
||||
@staticmethod
|
||||
def remove_bt_trade(trade):
|
||||
LocalTrade.trades_open.remove(trade)
|
||||
LocalTrade.bt_trades_open_pp[trade.pair].remove(trade)
|
||||
LocalTrade.bt_open_open_trade_count -= 1
|
||||
|
||||
@staticmethod
|
||||
def get_open_trades() -> List[Any]:
|
||||
"""
|
||||
@@ -1092,7 +1108,7 @@ class LocalTrade():
|
||||
if Trade.use_db:
|
||||
return Trade.query.filter(Trade.is_open.is_(True)).count()
|
||||
else:
|
||||
return len(LocalTrade.trades_open)
|
||||
return LocalTrade.bt_open_open_trade_count
|
||||
|
||||
@staticmethod
|
||||
def stoploss_reinitialization(desired_stoploss):
|
||||
|
@@ -26,6 +26,7 @@ class FreqaiModelResolver(IResolver):
|
||||
initial_search_path = (
|
||||
Path(__file__).parent.parent.joinpath("freqai/prediction_models").resolve()
|
||||
)
|
||||
extra_path = "freqaimodel_path"
|
||||
|
||||
@staticmethod
|
||||
def load_freqaimodel(config: Config) -> IFreqaiModel:
|
||||
@@ -50,7 +51,6 @@ class FreqaiModelResolver(IResolver):
|
||||
freqaimodel_name,
|
||||
config,
|
||||
kwargs={"config": config},
|
||||
extra_dir=config.get("freqaimodel_path"),
|
||||
)
|
||||
|
||||
return freqaimodel
|
||||
|
@@ -42,6 +42,8 @@ class IResolver:
|
||||
object_type_str: str
|
||||
user_subdir: Optional[str] = None
|
||||
initial_search_path: Optional[Path]
|
||||
# Optional config setting containing a path (strategy_path, freqaimodel_path)
|
||||
extra_path: Optional[str] = None
|
||||
|
||||
@classmethod
|
||||
def build_search_paths(cls, config: Config, user_subdir: Optional[str] = None,
|
||||
@@ -58,6 +60,9 @@ class IResolver:
|
||||
for dir in extra_dirs:
|
||||
abs_paths.insert(0, Path(dir).resolve())
|
||||
|
||||
if cls.extra_path and (extra := config.get(cls.extra_path)):
|
||||
abs_paths.insert(0, Path(extra).resolve())
|
||||
|
||||
return abs_paths
|
||||
|
||||
@classmethod
|
||||
@@ -183,9 +188,35 @@ class IResolver:
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def search_all_objects(cls, directory: Path, enum_failed: bool,
|
||||
def search_all_objects(cls, config: Config, enum_failed: bool,
|
||||
recursive: bool = False) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Searches for valid objects
|
||||
:param config: Config object
|
||||
:param enum_failed: If True, will return None for modules which fail.
|
||||
Otherwise, failing modules are skipped.
|
||||
:param recursive: Recursively walk directory tree searching for strategies
|
||||
:return: List of dicts containing 'name', 'class' and 'location' entries
|
||||
"""
|
||||
result = []
|
||||
|
||||
abs_paths = cls.build_search_paths(config, user_subdir=cls.user_subdir)
|
||||
for path in abs_paths:
|
||||
result.extend(cls._search_all_objects(path, enum_failed, recursive))
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def _build_rel_location(cls, directory: Path, entry: Path) -> str:
|
||||
|
||||
builtin = cls.initial_search_path == directory
|
||||
return f"<builtin>/{entry.relative_to(directory)}" if builtin else str(
|
||||
entry.relative_to(directory))
|
||||
|
||||
@classmethod
|
||||
def _search_all_objects(
|
||||
cls, directory: Path, enum_failed: bool, recursive: bool = False,
|
||||
basedir: Optional[Path] = None) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Searches a directory for valid objects
|
||||
:param directory: Path to search
|
||||
:param enum_failed: If True, will return None for modules which fail.
|
||||
@@ -204,7 +235,8 @@ class IResolver:
|
||||
and not entry.name.startswith('__')
|
||||
and not entry.name.startswith('.')
|
||||
):
|
||||
objects.extend(cls.search_all_objects(entry, enum_failed, recursive=recursive))
|
||||
objects.extend(cls._search_all_objects(
|
||||
entry, enum_failed, recursive, basedir or directory))
|
||||
# Only consider python files
|
||||
if entry.suffix != '.py':
|
||||
logger.debug('Ignoring %s', entry)
|
||||
@@ -217,5 +249,6 @@ class IResolver:
|
||||
{'name': obj[0].__name__ if obj is not None else '',
|
||||
'class': obj[0] if obj is not None else None,
|
||||
'location': entry,
|
||||
'location_rel': cls._build_rel_location(basedir or directory, entry),
|
||||
})
|
||||
return objects
|
||||
|
@@ -30,6 +30,7 @@ class StrategyResolver(IResolver):
|
||||
object_type_str = "Strategy"
|
||||
user_subdir = USERPATH_STRATEGIES
|
||||
initial_search_path = None
|
||||
extra_path = "strategy_path"
|
||||
|
||||
@staticmethod
|
||||
def load_strategy(config: Config = None) -> IStrategy:
|
||||
|
@@ -89,6 +89,7 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
|
||||
lastconfig['enable_protections'] = btconfig.get('enable_protections')
|
||||
lastconfig['dry_run_wallet'] = btconfig.get('dry_run_wallet')
|
||||
|
||||
ApiServer._bt.enable_protections = btconfig.get('enable_protections', False)
|
||||
ApiServer._bt.strategylist = [strat]
|
||||
ApiServer._bt.results = {}
|
||||
ApiServer._bt.load_prior_backtest()
|
||||
|
@@ -1,13 +1,11 @@
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
|
||||
from fastapi import APIRouter, Depends, Query
|
||||
from fastapi.exceptions import HTTPException
|
||||
|
||||
from freqtrade import __version__
|
||||
from freqtrade.constants import USERPATH_STRATEGIES
|
||||
from freqtrade.data.history import get_datahandler
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -253,11 +251,9 @@ def plot_config(rpc: RPC = Depends(get_rpc)):
|
||||
|
||||
@router.get('/strategies', response_model=StrategyListResponse, tags=['strategy'])
|
||||
def list_strategies(config=Depends(get_config)):
|
||||
directory = Path(config.get(
|
||||
'strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
|
||||
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
||||
strategies = StrategyResolver.search_all_objects(
|
||||
directory, False, config.get('recursive_strategy_search', False))
|
||||
config, False, config.get('recursive_strategy_search', False))
|
||||
strategies = sorted(strategies, key=lambda x: x['name'])
|
||||
|
||||
return {'strategies': [x['name'] for x in strategies]}
|
||||
|
@@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
@@ -89,6 +90,8 @@ async def _process_consumer_request(
|
||||
for _, message in analyzed_df.items():
|
||||
response = WSAnalyzedDFMessage(data=message)
|
||||
await channel.send(response.dict(exclude_none=True))
|
||||
# Throttle the messages to 50/s
|
||||
await asyncio.sleep(0.02)
|
||||
|
||||
|
||||
@router.websocket("/message/ws")
|
||||
|
@@ -198,6 +198,10 @@ class ApiServer(RPCHandler):
|
||||
logger.debug(f"Found message of type: {message.get('type')}")
|
||||
# Broadcast it
|
||||
await self._ws_channel_manager.broadcast(message)
|
||||
# Limit messages per sec.
|
||||
# Could cause problems with queue size if too low, and
|
||||
# problems with network traffik if too high.
|
||||
await asyncio.sleep(0.001)
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
|
Reference in New Issue
Block a user