use logger in favor of print

This commit is contained in:
robcaulk
2022-05-04 17:53:40 +02:00
parent 2a3347bc12
commit 4f447e08d2
3 changed files with 34 additions and 22 deletions

View File

@@ -1,6 +1,7 @@
import copy
import datetime
import json
import logging
import pickle as pk
from pathlib import Path
from typing import Any, Dict, List, Tuple
@@ -17,6 +18,8 @@ from freqtrade.configuration import TimeRange
SECONDS_IN_DAY = 86400
logger = logging.getLogger(__name__)
class DataHandler:
"""
@@ -175,7 +178,7 @@ class DataHandler:
labels = labels[
(drop_index == 0) & (drop_index_labels == 0)
] # assuming the labels depend entirely on the dataframe here.
print(
logger.info(
"dropped",
len(unfiltered_dataframe) - len(filtered_dataframe),
"training data points due to NaNs, ensure you have downloaded",
@@ -193,7 +196,7 @@ class DataHandler:
# that was based on a single NaN is ultimately protected from buys with do_predict
drop_index = ~drop_index
self.do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
print(
logger.info(
"dropped",
len(self.do_predict) - self.do_predict.sum(),
"of",
@@ -350,8 +353,8 @@ class DataHandler:
pca2 = PCA(n_components=n_keep_components)
self.data["n_kept_components"] = n_keep_components
pca2 = pca2.fit(self.data_dictionary["train_features"])
print("reduced feature dimension by", n_components - n_keep_components)
print("explained variance", np.sum(pca2.explained_variance_ratio_))
logger.info("reduced feature dimension by", n_components - n_keep_components)
logger.info("explained variance", np.sum(pca2.explained_variance_ratio_))
train_components = pca2.transform(self.data_dictionary["train_features"])
test_components = pca2.transform(self.data_dictionary["test_features"])
@@ -377,10 +380,10 @@ class DataHandler:
return None
def compute_distances(self) -> float:
print("computing average mean distance for all training points")
logger.info("computing average mean distance for all training points")
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=-1)
avg_mean_dist = pairwise.mean(axis=1).mean()
print("avg_mean_dist", avg_mean_dist)
logger.info("avg_mean_dist", avg_mean_dist)
return avg_mean_dist
@@ -407,7 +410,7 @@ class DataHandler:
drop_index = ~drop_index
do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
print(
logger.info(
"remove_outliers() tossed",
len(do_predict) - do_predict.sum(),
"predictions because they were beyond 3 std deviations from training data.",
@@ -472,7 +475,7 @@ class DataHandler:
for p in config["freqai"]["corr_pairlist"]:
features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
print("number of features", len(features))
logger.info("number of features", len(features))
return features
def check_if_pred_in_training_spaces(self) -> None:
@@ -483,7 +486,7 @@ class DataHandler:
from the training data set.
"""
print("checking if prediction features are in AOA")
logger.info("checking if prediction features are in AOA")
distance = pairwise_distances(
self.data_dictionary["train_features"],
self.data_dictionary["prediction_features"],
@@ -497,7 +500,7 @@ class DataHandler:
0,
)
print(
logger.info(
"Distance checker tossed",
len(do_predict) - do_predict.sum(),
"predictions for being too far from training data",