added new strategy, based on the Simple Strategy
This commit is contained in:
parent
3f1b48ba94
commit
4e2cd3e7ab
@ -38,10 +38,11 @@ class Quickie(IStrategy):
|
|||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||||
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
|
||||||
dataframe['sma_200'] = ta.SMA(dataframe, timeperiod=200)
|
dataframe['sma_200'] = ta.SMA(dataframe, timeperiod=200)
|
||||||
dataframe['sma_50'] = ta.SMA(dataframe, timeperiod=50)
|
dataframe['sma_50'] = ta.SMA(dataframe, timeperiod=50)
|
||||||
|
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
|
||||||
|
|
||||||
# required for graphing
|
# required for graphing
|
||||||
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
|
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
|
||||||
|
82
user_data/strategies/Simple.py
Normal file
82
user_data/strategies/Simple.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
# --- Do not remove these libs ---
|
||||||
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
from typing import Dict, List
|
||||||
|
from hyperopt import hp
|
||||||
|
from functools import reduce
|
||||||
|
from pandas import DataFrame
|
||||||
|
# --------------------------------
|
||||||
|
|
||||||
|
import talib.abstract as ta
|
||||||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
|
||||||
|
|
||||||
|
class Simple(IStrategy):
|
||||||
|
"""
|
||||||
|
|
||||||
|
author@: Gert Wohlgemuth
|
||||||
|
|
||||||
|
idea:
|
||||||
|
this strategy is based on the book, 'The Simple Strategy' and can be found in detail here:
|
||||||
|
|
||||||
|
https://www.amazon.com/Simple-Strategy-Powerful-Trading-Futures-ebook/dp/B00E66QPCG/ref=sr_1_1?ie=UTF8&qid=1525202675&sr=8-1&keywords=the+simple+strategy
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Minimal ROI designed for the strategy.
|
||||||
|
# since this strategy is planned around 5 minutes, we assume any time we have a 5% profit we should call it a day
|
||||||
|
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||||
|
minimal_roi = {
|
||||||
|
"0": 0.5
|
||||||
|
}
|
||||||
|
|
||||||
|
# Optimal stoploss designed for the strategy
|
||||||
|
# This attribute will be overridden if the config file contains "stoploss"
|
||||||
|
stoploss = -0.25
|
||||||
|
|
||||||
|
# Optimal ticker interval for the strategy
|
||||||
|
ticker_interval = 5
|
||||||
|
|
||||||
|
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||||
|
# MACD
|
||||||
|
macd = ta.MACD(dataframe)
|
||||||
|
dataframe['macd'] = macd['macd']
|
||||||
|
dataframe['macdsignal'] = macd['macdsignal']
|
||||||
|
dataframe['macdhist'] = macd['macdhist']
|
||||||
|
|
||||||
|
# RSI
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=7)
|
||||||
|
|
||||||
|
# required for graphing
|
||||||
|
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=12, stds=2)
|
||||||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
|
dataframe['bb_upperband'] = bollinger['upper']
|
||||||
|
|
||||||
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||||
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(
|
||||||
|
(dataframe['macd'] > 0) # over 0
|
||||||
|
& (dataframe['macd'] > dataframe['macdsignal']) # over signal
|
||||||
|
& (dataframe['bb_upperband'] > dataframe['bb_upperband'].shift(1)) # pointed up
|
||||||
|
& (dataframe['rsi'] > 70) # optional filter, need to investigate
|
||||||
|
)
|
||||||
|
),
|
||||||
|
'buy'] = 1
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||||
|
|
||||||
|
#different strategy used for sell points, due to be able to duplicate it to 100%
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(
|
||||||
|
(dataframe['adx'] > 70) &
|
||||||
|
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||||
|
)
|
||||||
|
),
|
||||||
|
'sell'] = 1
|
||||||
|
return dataframe
|
Loading…
Reference in New Issue
Block a user