fix persist a single training environment for PPO
This commit is contained in:
parent
f95602f6bd
commit
4baa36bdcf
config_examples
freqtrade/freqai
@ -82,10 +82,6 @@
|
|||||||
"model_training_parameters": {
|
"model_training_parameters": {
|
||||||
"learning_rate": 0.00025,
|
"learning_rate": 0.00025,
|
||||||
"gamma": 0.9,
|
"gamma": 0.9,
|
||||||
"target_update_interval": 5000,
|
|
||||||
"buffer_size": 50000,
|
|
||||||
"exploration_initial_eps":1,
|
|
||||||
"exploration_final_eps": 0.1,
|
|
||||||
"verbose": 1
|
"verbose": 1
|
||||||
},
|
},
|
||||||
"rl_config": {
|
"rl_config": {
|
||||||
|
@ -1,13 +1,16 @@
|
|||||||
import logging
|
import logging
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
# from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
from gym import spaces
|
from gym import spaces
|
||||||
from gym.utils import seeding
|
from gym.utils import seeding
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
|
||||||
|
# from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
@ -43,6 +46,9 @@ class Base3ActionRLEnv(gym.Env):
|
|||||||
|
|
||||||
self.id = id
|
self.id = id
|
||||||
self.seed(seed)
|
self.seed(seed)
|
||||||
|
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
|
||||||
|
|
||||||
|
def reset_env(self, df, prices, window_size, reward_kwargs, starting_point=True):
|
||||||
self.df = df
|
self.df = df
|
||||||
self.signal_features = self.df
|
self.signal_features = self.df
|
||||||
self.prices = prices
|
self.prices = prices
|
||||||
@ -54,7 +60,7 @@ class Base3ActionRLEnv(gym.Env):
|
|||||||
self.fee = 0.0015
|
self.fee = 0.0015
|
||||||
|
|
||||||
# # spaces
|
# # spaces
|
||||||
self.shape = (window_size, self.signal_features.shape[1])
|
self.shape = (window_size, self.signal_features.shape[1] + 2)
|
||||||
self.action_space = spaces.Discrete(len(Actions))
|
self.action_space = spaces.Discrete(len(Actions))
|
||||||
self.observation_space = spaces.Box(
|
self.observation_space = spaces.Box(
|
||||||
low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
||||||
@ -165,7 +171,16 @@ class Base3ActionRLEnv(gym.Env):
|
|||||||
return observation, step_reward, self._done, info
|
return observation, step_reward, self._done, info
|
||||||
|
|
||||||
def _get_observation(self):
|
def _get_observation(self):
|
||||||
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
features_window = self.signal_features[(
|
||||||
|
self._current_tick - self.window_size):self._current_tick]
|
||||||
|
features_and_state = DataFrame(np.zeros((len(features_window), 2)),
|
||||||
|
columns=['current_profit_pct', 'position'],
|
||||||
|
index=features_window.index)
|
||||||
|
|
||||||
|
features_and_state['current_profit_pct'] = self.get_unrealized_profit()
|
||||||
|
features_and_state['position'] = self._position.value
|
||||||
|
features_and_state = pd.concat([features_window, features_and_state], axis=1)
|
||||||
|
return features_and_state
|
||||||
|
|
||||||
def get_unrealized_profit(self):
|
def get_unrealized_profit(self):
|
||||||
|
|
||||||
@ -307,7 +322,7 @@ class Base3ActionRLEnv(gym.Env):
|
|||||||
def prev_price(self) -> float:
|
def prev_price(self) -> float:
|
||||||
return self.prices.iloc[self._current_tick - 1].open
|
return self.prices.iloc[self._current_tick - 1].open
|
||||||
|
|
||||||
def sharpe_ratio(self):
|
def sharpe_ratio(self) -> float:
|
||||||
if len(self.close_trade_profit) == 0:
|
if len(self.close_trade_profit) == 0:
|
||||||
return 0.
|
return 0.
|
||||||
returns = np.array(self.close_trade_profit)
|
returns = np.array(self.close_trade_profit)
|
||||||
|
@ -1,16 +1,17 @@
|
|||||||
|
import gc
|
||||||
import logging
|
import logging
|
||||||
from typing import Any, Dict # , Tuple
|
from typing import Any, Dict # , Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
# import numpy.typing as npt
|
# import numpy.typing as npt
|
||||||
import torch as th
|
import torch as th
|
||||||
from pandas import DataFrame
|
|
||||||
from stable_baselines3 import PPO
|
from stable_baselines3 import PPO
|
||||||
from stable_baselines3.common.callbacks import EvalCallback
|
from stable_baselines3.common.callbacks import EvalCallback
|
||||||
from stable_baselines3.common.monitor import Monitor
|
from stable_baselines3.common.monitor import Monitor
|
||||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
|
||||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from freqtrade.freqai.RL.Base3ActionRLEnv import Actions, Base3ActionRLEnv, Positions
|
||||||
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -21,23 +22,15 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
|||||||
User created Reinforcement Learning Model prediction model.
|
User created Reinforcement Learning Model prediction model.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen,
|
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
|
||||||
prices_train: DataFrame, prices_test: DataFrame):
|
|
||||||
|
|
||||||
train_df = data_dictionary["train_features"]
|
train_df = data_dictionary["train_features"]
|
||||||
test_df = data_dictionary["test_features"]
|
test_df = data_dictionary["test_features"]
|
||||||
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
|
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
|
||||||
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
|
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
|
||||||
|
|
||||||
# environments
|
|
||||||
train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
|
|
||||||
reward_kwargs=self.reward_params)
|
|
||||||
eval = MyRLEnv(df=test_df, prices=prices_test,
|
|
||||||
window_size=self.CONV_WIDTH, reward_kwargs=self.reward_params)
|
|
||||||
eval_env = Monitor(eval, ".")
|
|
||||||
|
|
||||||
path = dk.data_path
|
path = dk.data_path
|
||||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
|
||||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||||
deterministic=True, render=False)
|
deterministic=True, render=False)
|
||||||
|
|
||||||
@ -45,8 +38,8 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
|||||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||||
net_arch=[256, 256, 128])
|
net_arch=[256, 256, 128])
|
||||||
|
|
||||||
model = PPO('MlpPolicy', train_env, policy_kwargs=policy_kwargs,
|
model = PPO('MlpPolicy', self.train_env, policy_kwargs=policy_kwargs,
|
||||||
tensorboard_log=f"{path}/ppo/tensorboard/", learning_rate=0.00025,
|
tensorboard_log=f"{path}/ppo/tensorboard/",
|
||||||
**self.freqai_info['model_training_parameters']
|
**self.freqai_info['model_training_parameters']
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -55,12 +48,34 @@ class ReinforcementLearningPPO(BaseReinforcementLearningModel):
|
|||||||
callback=eval_callback
|
callback=eval_callback
|
||||||
)
|
)
|
||||||
|
|
||||||
|
del model
|
||||||
best_model = PPO.load(dk.data_path / "best_model")
|
best_model = PPO.load(dk.data_path / "best_model")
|
||||||
|
|
||||||
print('Training finished!')
|
print('Training finished!')
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
return best_model
|
return best_model
|
||||||
|
|
||||||
|
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
|
||||||
|
"""
|
||||||
|
User overrides this as shown here if they are using a custom MyRLEnv
|
||||||
|
"""
|
||||||
|
train_df = data_dictionary["train_features"]
|
||||||
|
test_df = data_dictionary["test_features"]
|
||||||
|
|
||||||
|
# environments
|
||||||
|
if not self.train_env:
|
||||||
|
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
|
||||||
|
reward_kwargs=self.reward_params)
|
||||||
|
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
|
||||||
|
window_size=self.CONV_WIDTH,
|
||||||
|
reward_kwargs=self.reward_params), ".")
|
||||||
|
else:
|
||||||
|
self.train_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
|
||||||
|
self.eval_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
|
||||||
|
self.train_env.reset()
|
||||||
|
self.eval_env.reset()
|
||||||
|
|
||||||
|
|
||||||
class MyRLEnv(Base3ActionRLEnv):
|
class MyRLEnv(Base3ActionRLEnv):
|
||||||
"""
|
"""
|
||||||
|
Loading…
Reference in New Issue
Block a user