reduce code duplication, optimize auto data download per tf
This commit is contained in:
parent
ac42c0153d
commit
4b7e640f31
@ -91,9 +91,9 @@ class DataProvider:
|
|||||||
timerange = TimeRange.parse_timerange(None if self._config.get(
|
timerange = TimeRange.parse_timerange(None if self._config.get(
|
||||||
'timerange') is None else str(self._config.get('timerange')))
|
'timerange') is None else str(self._config.get('timerange')))
|
||||||
# Move informative start time respecting startup_candle_count
|
# Move informative start time respecting startup_candle_count
|
||||||
timerange.subtract_start(
|
startup_candles = self.get_required_startup(str(timeframe))
|
||||||
self.get_required_startup_seconds(str(timeframe))
|
tf_seconds = timeframe_to_seconds(str(timeframe))
|
||||||
)
|
timerange.subtract_start(tf_seconds * startup_candles)
|
||||||
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
|
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
|
||||||
pair=pair,
|
pair=pair,
|
||||||
timeframe=timeframe or self._config['timeframe'],
|
timeframe=timeframe or self._config['timeframe'],
|
||||||
@ -105,16 +105,18 @@ class DataProvider:
|
|||||||
)
|
)
|
||||||
return self.__cached_pairs_backtesting[saved_pair].copy()
|
return self.__cached_pairs_backtesting[saved_pair].copy()
|
||||||
|
|
||||||
def get_required_startup_seconds(self, timeframe: str) -> int:
|
def get_required_startup(self, timeframe: str) -> int:
|
||||||
tf_seconds = timeframe_to_seconds(timeframe)
|
if not self._config.get('freqai', {}).get('enabled', False):
|
||||||
base_seconds = tf_seconds * self._config.get('startup_candle_count', 0)
|
return self._config.get('startup_candle_count', 0)
|
||||||
if not self._config['freqai']['enabled']:
|
|
||||||
return base_seconds
|
|
||||||
else:
|
else:
|
||||||
train_seconds = self._config['freqai']['train_period_days'] * 86400
|
if not self._config['startup_candle_count']:
|
||||||
# multiplied by safety factor of 2 because FreqAI users
|
raise OperationalException('FreqAI backtesting module requires strategy '
|
||||||
# typically do not know the correct window.
|
'set startup_candle_count.')
|
||||||
return base_seconds * 2 + int(train_seconds)
|
tf_seconds = timeframe_to_seconds(timeframe)
|
||||||
|
train_candles = self._config['freqai']['train_period_days'] * 86400 / tf_seconds
|
||||||
|
total_candles = int(self._config.get('startup_candle_count', 0) + train_candles)
|
||||||
|
logger.info(f'Increasing startup_candle_count for freqai to {total_candles}')
|
||||||
|
return total_candles
|
||||||
|
|
||||||
def get_pair_dataframe(
|
def get_pair_dataframe(
|
||||||
self,
|
self,
|
||||||
|
@ -1006,8 +1006,7 @@ class FreqaiDataKitchen:
|
|||||||
# Methods called by interface.py (load_freqai_model())
|
# Methods called by interface.py (load_freqai_model())
|
||||||
|
|
||||||
|
|
||||||
def download_all_data_for_training(timerange: TimeRange,
|
def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
||||||
dp: DataProvider, config: dict) -> None:
|
|
||||||
"""
|
"""
|
||||||
Called only once upon start of bot to download the necessary data for
|
Called only once upon start of bot to download the necessary data for
|
||||||
populating indicators and training the model.
|
populating indicators and training the model.
|
||||||
@ -1025,14 +1024,26 @@ def download_all_data_for_training(timerange: TimeRange,
|
|||||||
|
|
||||||
all_pairs = dynamic_expand_pairlist(config, markets)
|
all_pairs = dynamic_expand_pairlist(config, markets)
|
||||||
|
|
||||||
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
|
|
||||||
if not dp._exchange:
|
if not dp._exchange:
|
||||||
# Not realistic - this is only called in live mode.
|
# Not realistic - this is only called in live mode.
|
||||||
raise OperationalException("Dataprovider did not have an exchange attached.")
|
raise OperationalException("Dataprovider did not have an exchange attached.")
|
||||||
|
|
||||||
|
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
||||||
|
|
||||||
|
for tf in config["freqai"]["feature_parameters"].get("include_timeframes"):
|
||||||
|
timerange = TimeRange()
|
||||||
|
timerange.startts = int(time)
|
||||||
|
timerange.stopts = int(time)
|
||||||
|
startup_candles = dp.get_required_startup(str(tf))
|
||||||
|
tf_seconds = timeframe_to_seconds(str(tf))
|
||||||
|
timerange.subtract_start(tf_seconds * startup_candles)
|
||||||
|
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
|
||||||
|
# FIXME: now that we are looping on `refresh_backtest_ohlcv_data`, the function
|
||||||
|
# redownloads the funding rate for each pair.
|
||||||
refresh_backtest_ohlcv_data(
|
refresh_backtest_ohlcv_data(
|
||||||
dp._exchange,
|
dp._exchange,
|
||||||
pairs=all_pairs,
|
pairs=all_pairs,
|
||||||
timeframes=config["freqai"]["feature_parameters"].get("include_timeframes"),
|
timeframes=[tf],
|
||||||
datadir=config["datadir"],
|
datadir=config["datadir"],
|
||||||
timerange=timerange,
|
timerange=timerange,
|
||||||
new_pairs_days=new_pairs_days,
|
new_pairs_days=new_pairs_days,
|
||||||
@ -1041,35 +1052,3 @@ def download_all_data_for_training(timerange: TimeRange,
|
|||||||
trading_mode=config.get("trading_mode", "spot"),
|
trading_mode=config.get("trading_mode", "spot"),
|
||||||
prepend=config.get("prepend_data", False),
|
prepend=config.get("prepend_data", False),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def get_required_data_timerange(
|
|
||||||
config: dict
|
|
||||||
) -> TimeRange:
|
|
||||||
"""
|
|
||||||
Used by interface.py to pre-download necessary data for FreqAI
|
|
||||||
user.
|
|
||||||
"""
|
|
||||||
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
|
||||||
data_load_timerange = TimeRange()
|
|
||||||
|
|
||||||
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
|
|
||||||
|
|
||||||
max_tf_seconds = 0
|
|
||||||
for tf in timeframes:
|
|
||||||
secs = timeframe_to_seconds(tf)
|
|
||||||
if secs > max_tf_seconds:
|
|
||||||
max_tf_seconds = secs
|
|
||||||
|
|
||||||
max_period = config.get('startup_candle_count', 20) * 2
|
|
||||||
|
|
||||||
additional_seconds = max_period * max_tf_seconds
|
|
||||||
|
|
||||||
data_load_timerange.startts = int(
|
|
||||||
time
|
|
||||||
- config["freqai"].get("train_period_days", 0) * SECONDS_IN_DAY
|
|
||||||
- additional_seconds
|
|
||||||
)
|
|
||||||
data_load_timerange.stopts = int(time)
|
|
||||||
|
|
||||||
return data_load_timerange
|
|
||||||
|
@ -211,21 +211,12 @@ class Backtesting:
|
|||||||
"""
|
"""
|
||||||
self.progress.init_step(BacktestState.DATALOAD, 1)
|
self.progress.init_step(BacktestState.DATALOAD, 1)
|
||||||
|
|
||||||
# if self.config.get('freqai', {}).get('enabled', False):
|
|
||||||
# startup_candles = int(self.config.get('freqai', {}).get('startup_candles', 0))
|
|
||||||
# if not startup_candles:
|
|
||||||
# raise OperationalException('FreqAI backtesting module requires user set '
|
|
||||||
# 'startup_candles in config.')
|
|
||||||
# self.required_startup += int(self.config.get('freqai', {}).get('startup_candles', 0))
|
|
||||||
# logger.info(f'Increasing startup_candle_count for freqai to {self.required_startup}')
|
|
||||||
# self.config['startup_candle_count'] = self.required_startup
|
|
||||||
|
|
||||||
data = history.load_data(
|
data = history.load_data(
|
||||||
datadir=self.config['datadir'],
|
datadir=self.config['datadir'],
|
||||||
pairs=self.pairlists.whitelist,
|
pairs=self.pairlists.whitelist,
|
||||||
timeframe=self.timeframe,
|
timeframe=self.timeframe,
|
||||||
timerange=self.timerange,
|
timerange=self.timerange,
|
||||||
startup_candles=self.get_required_startup(self.timeframe),
|
startup_candles=self.dataprovider.get_required_startup(self.timeframe),
|
||||||
fail_without_data=True,
|
fail_without_data=True,
|
||||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||||
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
|
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
|
||||||
@ -244,21 +235,6 @@ class Backtesting:
|
|||||||
self.progress.set_new_value(1)
|
self.progress.set_new_value(1)
|
||||||
return data, self.timerange
|
return data, self.timerange
|
||||||
|
|
||||||
def get_required_startup(self, timeframe: str) -> int:
|
|
||||||
if not self.config['freqai']['enabled']:
|
|
||||||
return self.required_startup
|
|
||||||
else:
|
|
||||||
if not self.config['startup_candle_count']:
|
|
||||||
raise OperationalException('FreqAI backtesting module requires strategy '
|
|
||||||
'set startup_candle_count.')
|
|
||||||
tf_seconds = timeframe_to_seconds(timeframe)
|
|
||||||
train_candles = self.config['freqai']['train_period_days'] * 86400 / tf_seconds
|
|
||||||
# multiplied by safety factor of 2 because FreqAI users
|
|
||||||
# typically do not know the correct window.
|
|
||||||
total_candles = self.required_startup * 2 + train_candles
|
|
||||||
logger.info(f'Increasing startup_candle_count for freqai to {total_candles}')
|
|
||||||
return total_candles
|
|
||||||
|
|
||||||
def load_bt_data_detail(self) -> None:
|
def load_bt_data_detail(self) -> None:
|
||||||
"""
|
"""
|
||||||
Loads backtest detail data (smaller timeframe) if necessary.
|
Loads backtest detail data (smaller timeframe) if necessary.
|
||||||
|
@ -148,8 +148,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
def load_freqAI_model(self) -> None:
|
def load_freqAI_model(self) -> None:
|
||||||
if self.config.get('freqai', {}).get('enabled', False):
|
if self.config.get('freqai', {}).get('enabled', False):
|
||||||
# Import here to avoid importing this if freqAI is disabled
|
# Import here to avoid importing this if freqAI is disabled
|
||||||
from freqtrade.freqai.data_kitchen import (download_all_data_for_training,
|
from freqtrade.freqai.data_kitchen import (download_all_data_for_training)
|
||||||
get_required_data_timerange)
|
|
||||||
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
||||||
self.freqai = FreqaiModelResolver.load_freqaimodel(self.config)
|
self.freqai = FreqaiModelResolver.load_freqaimodel(self.config)
|
||||||
self.freqai_info = self.config["freqai"]
|
self.freqai_info = self.config["freqai"]
|
||||||
@ -161,8 +160,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
"corr_pairlist, this may take a while if you do not have the "
|
"corr_pairlist, this may take a while if you do not have the "
|
||||||
"data saved"
|
"data saved"
|
||||||
)
|
)
|
||||||
data_load_timerange = get_required_data_timerange(self.config)
|
# data_load_timerange = get_required_data_timerange(self.config)
|
||||||
download_all_data_for_training(data_load_timerange, self.dp, self.config)
|
download_all_data_for_training(self.dp, self.config)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Gracious failures if freqAI is disabled but "start" is called.
|
# Gracious failures if freqAI is disabled but "start" is called.
|
||||||
|
Loading…
Reference in New Issue
Block a user