reduce code duplication, optimize auto data download per tf

This commit is contained in:
robcaulk
2022-08-26 13:56:44 +02:00
parent ac42c0153d
commit 4b7e640f31
4 changed files with 41 additions and 85 deletions

View File

@@ -1006,8 +1006,7 @@ class FreqaiDataKitchen:
# Methods called by interface.py (load_freqai_model())
def download_all_data_for_training(timerange: TimeRange,
dp: DataProvider, config: dict) -> None:
def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
"""
Called only once upon start of bot to download the necessary data for
populating indicators and training the model.
@@ -1025,51 +1024,31 @@ def download_all_data_for_training(timerange: TimeRange,
all_pairs = dynamic_expand_pairlist(config, markets)
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
if not dp._exchange:
# Not realistic - this is only called in live mode.
raise OperationalException("Dataprovider did not have an exchange attached.")
refresh_backtest_ohlcv_data(
dp._exchange,
pairs=all_pairs,
timeframes=config["freqai"]["feature_parameters"].get("include_timeframes"),
datadir=config["datadir"],
timerange=timerange,
new_pairs_days=new_pairs_days,
erase=False,
data_format=config.get("dataformat_ohlcv", "json"),
trading_mode=config.get("trading_mode", "spot"),
prepend=config.get("prepend_data", False),
)
def get_required_data_timerange(
config: dict
) -> TimeRange:
"""
Used by interface.py to pre-download necessary data for FreqAI
user.
"""
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
data_load_timerange = TimeRange()
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
max_tf_seconds = 0
for tf in timeframes:
secs = timeframe_to_seconds(tf)
if secs > max_tf_seconds:
max_tf_seconds = secs
max_period = config.get('startup_candle_count', 20) * 2
additional_seconds = max_period * max_tf_seconds
data_load_timerange.startts = int(
time
- config["freqai"].get("train_period_days", 0) * SECONDS_IN_DAY
- additional_seconds
)
data_load_timerange.stopts = int(time)
return data_load_timerange
for tf in config["freqai"]["feature_parameters"].get("include_timeframes"):
timerange = TimeRange()
timerange.startts = int(time)
timerange.stopts = int(time)
startup_candles = dp.get_required_startup(str(tf))
tf_seconds = timeframe_to_seconds(str(tf))
timerange.subtract_start(tf_seconds * startup_candles)
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
# FIXME: now that we are looping on `refresh_backtest_ohlcv_data`, the function
# redownloads the funding rate for each pair.
refresh_backtest_ohlcv_data(
dp._exchange,
pairs=all_pairs,
timeframes=[tf],
datadir=config["datadir"],
timerange=timerange,
new_pairs_days=new_pairs_days,
erase=False,
data_format=config.get("dataformat_ohlcv", "json"),
trading_mode=config.get("trading_mode", "spot"),
prepend=config.get("prepend_data", False),
)