Add V3 test strategy

This commit is contained in:
Matthias 2021-09-21 07:11:53 +02:00
parent cf2da3b45f
commit 4b5cd891cd
6 changed files with 169 additions and 10 deletions

View File

@ -3,7 +3,7 @@
from pandas import DataFrame from pandas import DataFrame
from freqtrade.strategy import informative, merge_informative_pair from freqtrade.strategy import informative, merge_informative_pair
from freqtrade.strategy.interface import IStrategy from freqtrade.strategy import IStrategy
class InformativeDecoratorTest(IStrategy): class InformativeDecoratorTest(IStrategy):

View File

@ -4,7 +4,7 @@
import talib.abstract as ta import talib.abstract as ta
from pandas import DataFrame from pandas import DataFrame
from freqtrade.strategy.interface import IStrategy from freqtrade.strategy import IStrategy
# -------------------------------- # --------------------------------

View File

@ -4,7 +4,7 @@ import talib.abstract as ta
from pandas import DataFrame from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.strategy.interface import IStrategy from freqtrade.strategy import IStrategy
class StrategyTestV2(IStrategy): class StrategyTestV2(IStrategy):

View File

@ -0,0 +1,159 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy,
RealParameter)
class StrategyTestV3(IStrategy):
"""
Strategy used by tests freqtrade bot.
Please do not modify this strategy, it's intended for internal use only.
Please look at the SampleStrategy in the user_data/strategy directory
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 3
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal timeframe for the strategy
timeframe = '5m'
# Optional order type mapping
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
}
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
# Optional time in force for orders
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc',
}
buy_params = {
'buy_rsi': 35,
# Intentionally not specified, so "default" is tested
# 'buy_plusdi': 0.4
}
sell_params = {
'sell_rsi': 74,
'sell_minusdi': 0.4
}
buy_rsi = IntParameter([0, 50], default=30, space='buy')
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
load=False)
protection_enabled = BooleanParameter(default=True)
protection_cooldown_lookback = IntParameter([0, 50], default=30)
@property
def protections(self):
prot = []
if self.protection_enabled.value:
prot.append({
"method": "CooldownPeriod",
"stop_duration_candles": self.protection_cooldown_lookback.value
})
return prot
def informative_pairs(self):
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# Minus Directional Indicator / Movement
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['rsi'] < self.buy_rsi.value) &
(dataframe['fastd'] < 35) &
(dataframe['adx'] > 30) &
(dataframe['plus_di'] > self.buy_plusdi.value)
) |
(
(dataframe['adx'] > 65) &
(dataframe['plus_di'] > self.buy_plusdi.value)
),
'enter_trade'] = 1
# TODO-lev: Add short logic
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
) &
(dataframe['adx'] > 10) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['adx'] > 70) &
(dataframe['minus_di'] > self.sell_minusdi.value)
),
'exit_trade'] = 1
# TODO-lev: Add short logic
return dataframe

View File

@ -581,10 +581,10 @@ def test__analyze_ticker_internal_skip_analyze(ohlcv_history, mocker, caplog) ->
assert buy_mock.call_count == 1 assert buy_mock.call_count == 1
assert buy_mock.call_count == 1 assert buy_mock.call_count == 1
# only skipped analyze adds buy and sell columns, otherwise it's all mocked # only skipped analyze adds buy and sell columns, otherwise it's all mocked
assert 'buy' in ret.columns assert 'enter_long' in ret.columns
assert 'sell' in ret.columns assert 'exit_long' in ret.columns
assert ret['buy'].sum() == 0 assert ret['enter_long'].sum() == 0
assert ret['sell'].sum() == 0 assert ret['exit_long'].sum() == 0
assert not log_has('TA Analysis Launched', caplog) assert not log_has('TA Analysis Launched', caplog)
assert log_has('Skipping TA Analysis for already analyzed candle', caplog) assert log_has('Skipping TA Analysis for already analyzed candle', caplog)

View File

@ -35,7 +35,7 @@ def test_search_all_strategies_no_failed():
directory = Path(__file__).parent / "strats" directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False) strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
assert isinstance(strategies, list) assert isinstance(strategies, list)
assert len(strategies) == 4 assert len(strategies) == 5
assert isinstance(strategies[0], dict) assert isinstance(strategies[0], dict)
@ -43,10 +43,10 @@ def test_search_all_strategies_with_failed():
directory = Path(__file__).parent / "strats" directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True) strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
assert isinstance(strategies, list) assert isinstance(strategies, list)
assert len(strategies) == 5 assert len(strategies) == 6
# with enum_failed=True search_all_objects() shall find 2 good strategies # with enum_failed=True search_all_objects() shall find 2 good strategies
# and 1 which fails to load # and 1 which fails to load
assert len([x for x in strategies if x['class'] is not None]) == 4 assert len([x for x in strategies if x['class'] is not None]) == 5
assert len([x for x in strategies if x['class'] is None]) == 1 assert len([x for x in strategies if x['class'] is None]) == 1