Merge pull request #8297 from Yinon-Polak/feat/add-pytorch-model-support
Feat/add pytorch model support
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
@@ -85,6 +86,22 @@ def make_rl_config(conf):
|
||||
return conf
|
||||
|
||||
|
||||
def mock_pytorch_mlp_model_training_parameters() -> Dict[str, Any]:
|
||||
return {
|
||||
"learning_rate": 3e-4,
|
||||
"trainer_kwargs": {
|
||||
"max_iters": 1,
|
||||
"batch_size": 64,
|
||||
"max_n_eval_batches": 1,
|
||||
},
|
||||
"model_kwargs": {
|
||||
"hidden_dim": 32,
|
||||
"dropout_percent": 0.2,
|
||||
"n_layer": 1,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_patched_data_kitchen(mocker, freqaiconf):
|
||||
dk = FreqaiDataKitchen(freqaiconf)
|
||||
return dk
|
||||
|
@@ -15,7 +15,8 @@ from freqtrade.optimize.backtesting import Backtesting
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.plugins.pairlistmanager import PairListManager
|
||||
from tests.conftest import EXMS, create_mock_trades, get_patched_exchange, log_has_re
|
||||
from tests.freqai.conftest import get_patched_freqai_strategy, make_rl_config
|
||||
from tests.freqai.conftest import (get_patched_freqai_strategy, make_rl_config,
|
||||
mock_pytorch_mlp_model_training_parameters)
|
||||
|
||||
|
||||
def is_py11() -> bool:
|
||||
@@ -34,13 +35,14 @@ def is_mac() -> bool:
|
||||
|
||||
def can_run_model(model: str) -> None:
|
||||
if (is_arm() or is_py11()) and "Catboost" in model:
|
||||
pytest.skip("CatBoost is not supported on ARM")
|
||||
pytest.skip("CatBoost is not supported on ARM.")
|
||||
|
||||
if is_mac() and not is_arm() and 'Reinforcement' in model:
|
||||
pytest.skip("Reinforcement learning module not available on intel based Mac OS")
|
||||
is_pytorch_model = 'Reinforcement' in model or 'PyTorch' in model
|
||||
if is_pytorch_model and is_mac() and not is_arm():
|
||||
pytest.skip("Reinforcement learning / PyTorch module not available on intel based Mac OS.")
|
||||
|
||||
if is_py11() and 'Reinforcement' in model:
|
||||
pytest.skip("Reinforcement learning currently not available on python 3.11.")
|
||||
if is_pytorch_model and is_py11():
|
||||
pytest.skip("Reinforcement learning / PyTorch currently not available on python 3.11.")
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model, pca, dbscan, float32, can_short, shuffle, buffer', [
|
||||
@@ -48,11 +50,12 @@ def can_run_model(model: str) -> None:
|
||||
('XGBoostRegressor', False, True, False, True, False, 10),
|
||||
('XGBoostRFRegressor', False, False, False, True, False, 0),
|
||||
('CatboostRegressor', False, False, False, True, True, 0),
|
||||
('PyTorchMLPRegressor', False, False, False, True, False, 0),
|
||||
('ReinforcementLearner', False, True, False, True, False, 0),
|
||||
('ReinforcementLearner_multiproc', False, False, False, True, False, 0),
|
||||
('ReinforcementLearner_test_3ac', False, False, False, False, False, 0),
|
||||
('ReinforcementLearner_test_3ac', False, False, False, True, False, 0),
|
||||
('ReinforcementLearner_test_4ac', False, False, False, True, False, 0)
|
||||
('ReinforcementLearner_test_4ac', False, False, False, True, False, 0),
|
||||
])
|
||||
def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
||||
dbscan, float32, can_short, shuffle, buffer):
|
||||
@@ -79,6 +82,11 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
||||
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
|
||||
freqai_conf["freqai"]["rl_config"]["drop_ohlc_from_features"] = True
|
||||
|
||||
if 'PyTorchMLPRegressor' in model:
|
||||
model_save_ext = 'zip'
|
||||
pytorch_mlp_mtp = mock_pytorch_mlp_model_training_parameters()
|
||||
freqai_conf['freqai']['model_training_parameters'].update(pytorch_mlp_mtp)
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
@@ -123,8 +131,7 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
||||
('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat")
|
||||
])
|
||||
def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, strat):
|
||||
if (is_arm() or is_py11()) and 'Catboost' in model:
|
||||
pytest.skip("CatBoost is not supported on ARM")
|
||||
can_run_model(model)
|
||||
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
freqai_conf.update({"strategy": strat})
|
||||
@@ -164,10 +171,10 @@ def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, s
|
||||
'CatboostClassifier',
|
||||
'XGBoostClassifier',
|
||||
'XGBoostRFClassifier',
|
||||
'PyTorchMLPClassifier',
|
||||
])
|
||||
def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
||||
if (is_arm() or is_py11()) and model == 'CatboostClassifier':
|
||||
pytest.skip("CatBoost is not supported on ARM")
|
||||
can_run_model(model)
|
||||
|
||||
freqai_conf.update({"freqaimodel": model})
|
||||
freqai_conf.update({"strategy": "freqai_test_classifier"})
|
||||
@@ -193,7 +200,20 @@ def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
||||
freqai.extract_data_and_train_model(new_timerange, "ADA/BTC",
|
||||
strategy, freqai.dk, data_load_timerange)
|
||||
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").exists()
|
||||
if 'PyTorchMLPClassifier':
|
||||
pytorch_mlp_mtp = mock_pytorch_mlp_model_training_parameters()
|
||||
freqai_conf['freqai']['model_training_parameters'].update(pytorch_mlp_mtp)
|
||||
|
||||
if freqai.dd.model_type == 'joblib':
|
||||
model_file_extension = ".joblib"
|
||||
elif freqai.dd.model_type == "pytorch":
|
||||
model_file_extension = ".zip"
|
||||
else:
|
||||
raise Exception(f"Unsupported model type: {freqai.dd.model_type},"
|
||||
f" can't assign model_file_extension")
|
||||
|
||||
assert Path(freqai.dk.data_path /
|
||||
f"{freqai.dk.model_filename}_model{model_file_extension}").exists()
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").exists()
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").exists()
|
||||
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").exists()
|
||||
@@ -207,10 +227,12 @@ def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
||||
("LightGBMRegressor", 2, "freqai_test_strat"),
|
||||
("XGBoostRegressor", 2, "freqai_test_strat"),
|
||||
("CatboostRegressor", 2, "freqai_test_strat"),
|
||||
("PyTorchMLPRegressor", 2, "freqai_test_strat"),
|
||||
("ReinforcementLearner", 3, "freqai_rl_test_strat"),
|
||||
("XGBoostClassifier", 2, "freqai_test_classifier"),
|
||||
("LightGBMClassifier", 2, "freqai_test_classifier"),
|
||||
("CatboostClassifier", 2, "freqai_test_classifier")
|
||||
("CatboostClassifier", 2, "freqai_test_classifier"),
|
||||
("PyTorchMLPClassifier", 2, "freqai_test_classifier")
|
||||
],
|
||||
)
|
||||
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog):
|
||||
@@ -231,6 +253,10 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog)
|
||||
if 'test_4ac' in model:
|
||||
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
|
||||
|
||||
if 'PyTorchMLP' in model:
|
||||
pytorch_mlp_mtp = mock_pytorch_mlp_model_training_parameters()
|
||||
freqai_conf['freqai']['model_training_parameters'].update(pytorch_mlp_mtp)
|
||||
|
||||
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(
|
||||
{"indicator_periods_candles": [2]})
|
||||
|
||||
|
@@ -82,7 +82,7 @@ class freqai_test_classifier(IStrategy):
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
self.freqai.class_names = ["down", "up"]
|
||||
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
|
||||
dataframe["close"], 'up', 'down')
|
||||
|
||||
|
Reference in New Issue
Block a user