Merge branch 'develop' into feat/short
This commit is contained in:
@@ -9,21 +9,13 @@ import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import json_load
|
||||
from freqtrade.persistence import LocalTrade, Trade, init_db
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Old format - maybe remove?
|
||||
BT_DATA_COLUMNS_OLD = ["pair", "profit_percent", "open_date", "close_date", "index",
|
||||
"trade_duration", "open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
|
||||
# Mid-term format, created by BacktestResult Named Tuple
|
||||
BT_DATA_COLUMNS_MID = ['pair', 'profit_percent', 'open_date', 'close_date', 'trade_duration',
|
||||
'open_rate', 'close_rate', 'open_at_end', 'sell_reason', 'fee_open',
|
||||
'fee_close', 'amount', 'profit_abs', 'profit_ratio']
|
||||
|
||||
# Newest format
|
||||
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
|
||||
'open_rate', 'close_rate',
|
||||
@@ -170,23 +162,9 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
|
||||
)
|
||||
else:
|
||||
# old format - only with lists.
|
||||
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS_OLD)
|
||||
if not df.empty:
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
# Create compatibility with new format
|
||||
df['profit_abs'] = df['close_rate'] - df['open_rate']
|
||||
raise OperationalException(
|
||||
"Backtest-results with only trades data are no longer supported.")
|
||||
if not df.empty:
|
||||
if 'profit_ratio' not in df.columns:
|
||||
df['profit_ratio'] = df['profit_percent']
|
||||
df = df.sort_values("open_date").reset_index(drop=True)
|
||||
return df
|
||||
|
||||
@@ -395,15 +373,17 @@ def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
||||
|
||||
|
||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
||||
value_col: str = 'profit_ratio'
|
||||
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float]:
|
||||
value_col: str = 'profit_abs', starting_balance: float = 0
|
||||
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
|
||||
"""
|
||||
Calculate max drawdown and the corresponding close dates
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
|
||||
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
|
||||
high and low time and high and low value.
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
|
||||
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
|
||||
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
|
||||
with absolute max drawdown, high and low time and high and low value,
|
||||
and the relative account drawdown
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
@@ -419,7 +399,18 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date'
|
||||
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
|
||||
['high_value'].idxmax(), 'cumulative']
|
||||
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
|
||||
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date, high_val, low_val
|
||||
max_drawdown_rel = 0.0
|
||||
if high_val + starting_balance != 0:
|
||||
max_drawdown_rel = (high_val - low_val) / (high_val + starting_balance)
|
||||
|
||||
return (
|
||||
abs(min(max_drawdown_df['drawdown'])),
|
||||
high_date,
|
||||
low_date,
|
||||
high_val,
|
||||
low_val,
|
||||
max_drawdown_rel
|
||||
)
|
||||
|
||||
|
||||
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
|
||||
|
@@ -65,6 +65,8 @@ class Exchange:
|
||||
"ohlcv_params": {},
|
||||
"ohlcv_candle_limit": 500,
|
||||
"ohlcv_partial_candle": True,
|
||||
# Check https://github.com/ccxt/ccxt/issues/10767 for removal of ohlcv_volume_currency
|
||||
"ohlcv_volume_currency": "base", # "base" or "quote"
|
||||
"trades_pagination": "time", # Possible are "time" or "id"
|
||||
"trades_pagination_arg": "since",
|
||||
"l2_limit_range": None,
|
||||
@@ -797,7 +799,8 @@ class Exchange:
|
||||
max_slippage_val = rate * ((1 + slippage) if side == 'buy' else (1 - slippage))
|
||||
|
||||
remaining_amount = amount
|
||||
filled_amount = 0
|
||||
filled_amount = 0.0
|
||||
book_entry_price = 0.0
|
||||
for book_entry in ob[ob_type]:
|
||||
book_entry_price = book_entry[0]
|
||||
book_entry_coin_volume = book_entry[1]
|
||||
|
@@ -20,6 +20,7 @@ class Ftx(Exchange):
|
||||
_ft_has: Dict = {
|
||||
"stoploss_on_exchange": True,
|
||||
"ohlcv_candle_limit": 1500,
|
||||
"ohlcv_volume_currency": "quote",
|
||||
"mark_ohlcv_price": "index",
|
||||
"mark_ohlcv_timeframe": "1h",
|
||||
}
|
||||
|
@@ -22,6 +22,7 @@ class Gateio(Exchange):
|
||||
|
||||
_ft_has: Dict = {
|
||||
"ohlcv_candle_limit": 1000,
|
||||
"ohlcv_volume_currency": "quote",
|
||||
}
|
||||
|
||||
_headers = {'X-Gate-Channel-Id': 'freqtrade'}
|
||||
|
@@ -15,7 +15,7 @@ class Okex(Exchange):
|
||||
"""
|
||||
|
||||
_ft_has: Dict = {
|
||||
"ohlcv_candle_limit": 100,
|
||||
"ohlcv_candle_limit": 300,
|
||||
"mark_ohlcv_timeframe": "4h",
|
||||
"funding_fee_timeframe": "8h",
|
||||
}
|
||||
|
@@ -448,8 +448,10 @@ class Backtesting:
|
||||
detail_data.loc[:, 'exit_long'] = sell_row[ELONG_IDX]
|
||||
detail_data.loc[:, 'enter_long'] = sell_row[LONG_IDX]
|
||||
detail_data.loc[:, 'exit_long'] = sell_row[ELONG_IDX]
|
||||
detail_data.loc[:, 'enter_tag'] = sell_row[ENTER_TAG_IDX]
|
||||
detail_data.loc[:, 'exit_tag'] = sell_row[EXIT_TAG_IDX]
|
||||
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short']
|
||||
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
|
||||
for det_row in detail_data[headers].values.tolist():
|
||||
res = self._get_sell_trade_entry_for_candle(trade, det_row)
|
||||
if res:
|
||||
|
@@ -76,6 +76,7 @@ class Hyperopt:
|
||||
self.config = config
|
||||
|
||||
self.backtesting = Backtesting(self.config)
|
||||
self.pairlist = self.backtesting.pairlists.whitelist
|
||||
|
||||
if not self.config.get('hyperopt'):
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
@@ -332,7 +333,7 @@ class Hyperopt:
|
||||
params_details = self._get_params_details(params_dict)
|
||||
|
||||
strat_stats = generate_strategy_stats(
|
||||
processed, self.backtesting.strategy.get_strategy_name(),
|
||||
self.pairlist, self.backtesting.strategy.get_strategy_name(),
|
||||
backtesting_results, min_date, max_date, market_change=0
|
||||
)
|
||||
results_explanation = HyperoptTools.format_results_explanation_string(
|
||||
|
@@ -47,10 +47,9 @@ class CalmarHyperOptLoss(IHyperOptLoss):
|
||||
|
||||
# calculate max drawdown
|
||||
try:
|
||||
_, _, _, high_val, low_val = calculate_max_drawdown(
|
||||
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
|
||||
results, value_col="profit_abs"
|
||||
)
|
||||
max_drawdown = (high_val - low_val) / high_val
|
||||
except ValueError:
|
||||
max_drawdown = 0
|
||||
|
||||
|
@@ -308,8 +308,7 @@ class HyperoptTools():
|
||||
|
||||
if not has_drawdown:
|
||||
# Ensure compatibility with older versions of hyperopt results
|
||||
trials['results_metrics.max_drawdown_abs'] = None
|
||||
trials['results_metrics.max_drawdown'] = None
|
||||
trials['results_metrics.max_drawdown_account'] = None
|
||||
|
||||
# New mode, using backtest result for metrics
|
||||
trials['results_metrics.winsdrawslosses'] = trials.apply(
|
||||
@@ -320,12 +319,15 @@ class HyperoptTools():
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
|
||||
'results_metrics.profit_total', 'results_metrics.holding_avg',
|
||||
'results_metrics.max_drawdown', 'results_metrics.max_drawdown_abs',
|
||||
'results_metrics.max_drawdown',
|
||||
'results_metrics.max_drawdown_account', 'results_metrics.max_drawdown_abs',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
|
||||
'Total profit', 'Profit', 'Avg duration', 'Max Drawdown',
|
||||
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best']
|
||||
trials.columns = [
|
||||
'Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
|
||||
'Total profit', 'Profit', 'Avg duration', 'max_drawdown', 'max_drawdown_account',
|
||||
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best'
|
||||
]
|
||||
|
||||
return trials
|
||||
|
||||
@@ -341,9 +343,9 @@ class HyperoptTools():
|
||||
tabulate.PRESERVE_WHITESPACE = True
|
||||
trials = json_normalize(results, max_level=1)
|
||||
|
||||
has_drawdown = 'results_metrics.max_drawdown_abs' in trials.columns
|
||||
has_account_drawdown = 'results_metrics.max_drawdown_account' in trials.columns
|
||||
|
||||
trials = HyperoptTools.prepare_trials_columns(trials, has_drawdown)
|
||||
trials = HyperoptTools.prepare_trials_columns(trials, has_account_drawdown)
|
||||
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '* '
|
||||
@@ -368,19 +370,20 @@ class HyperoptTools():
|
||||
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
if has_drawdown:
|
||||
trials['Max Drawdown'] = trials.apply(
|
||||
lambda x: '{} {}'.format(
|
||||
round_coin_value(x['max_drawdown_abs'], stake_currency),
|
||||
f"({x['Max Drawdown']:,.2%})".rjust(10, ' ')
|
||||
).rjust(25 + len(stake_currency))
|
||||
if x['Max Drawdown'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
|
||||
axis=1
|
||||
)
|
||||
else:
|
||||
trials = trials.drop(columns=['Max Drawdown'])
|
||||
trials[f"Max Drawdown{' (Acct)' if has_account_drawdown else ''}"] = trials.apply(
|
||||
lambda x: "{} {}".format(
|
||||
round_coin_value(x['max_drawdown_abs'], stake_currency),
|
||||
(f"({x['max_drawdown_account']:,.2%})"
|
||||
if has_account_drawdown
|
||||
else f"({x['max_drawdown']:,.2%})"
|
||||
).rjust(10, ' ')
|
||||
).rjust(25 + len(stake_currency))
|
||||
if x['max_drawdown'] != 0.0 or x['max_drawdown_account'] != 0.0
|
||||
else '--'.rjust(25 + len(stake_currency)),
|
||||
axis=1
|
||||
)
|
||||
|
||||
trials = trials.drop(columns=['max_drawdown_abs'])
|
||||
trials = trials.drop(columns=['max_drawdown_abs', 'max_drawdown', 'max_drawdown_account'])
|
||||
|
||||
trials['Profit'] = trials.apply(
|
||||
lambda x: '{} {}'.format(
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Union
|
||||
@@ -98,11 +99,11 @@ def _generate_result_line(result: DataFrame, starting_balance: int, first_column
|
||||
}
|
||||
|
||||
|
||||
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_balance: int,
|
||||
def generate_pair_metrics(pairlist: List[str], stake_currency: str, starting_balance: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
|
||||
"""
|
||||
Generates and returns a list for the given backtest data and the results dataframe
|
||||
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
||||
:param pairlist: Pairlist used
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param starting_balance: Starting balance
|
||||
:param results: Dataframe containing the backtest results
|
||||
@@ -112,7 +113,7 @@ def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_b
|
||||
|
||||
tabular_data = []
|
||||
|
||||
for pair in data:
|
||||
for pair in pairlist:
|
||||
result = results[results['pair'] == pair]
|
||||
if skip_nan and result['profit_abs'].isnull().all():
|
||||
continue
|
||||
@@ -194,29 +195,21 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_strategy_comparison(all_results: Dict) -> List[Dict]:
|
||||
def generate_strategy_comparison(bt_stats: Dict) -> List[Dict]:
|
||||
"""
|
||||
Generate summary per strategy
|
||||
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:param bt_stats: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:return: List of Dicts containing the metrics per Strategy
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append(_generate_result_line(
|
||||
results['results'], results['config']['dry_run_wallet'], strategy)
|
||||
)
|
||||
try:
|
||||
max_drawdown_per, _, _, _, _ = calculate_max_drawdown(results['results'],
|
||||
value_col='profit_ratio')
|
||||
max_drawdown_abs, _, _, _, _ = calculate_max_drawdown(results['results'],
|
||||
value_col='profit_abs')
|
||||
except ValueError:
|
||||
max_drawdown_per = 0
|
||||
max_drawdown_abs = 0
|
||||
tabular_data[-1]['max_drawdown_per'] = round(max_drawdown_per * 100, 2)
|
||||
tabular_data[-1]['max_drawdown_abs'] = \
|
||||
round_coin_value(max_drawdown_abs, results['config']['stake_currency'], False)
|
||||
for strategy, result in bt_stats.items():
|
||||
tabular_data.append(deepcopy(result['results_per_pair'][-1]))
|
||||
# Update "key" to strategy (results_per_pair has it as "Total").
|
||||
tabular_data[-1]['key'] = strategy
|
||||
tabular_data[-1]['max_drawdown_account'] = result['max_drawdown_account']
|
||||
tabular_data[-1]['max_drawdown_abs'] = round_coin_value(
|
||||
result['max_drawdown_abs'], result['stake_currency'], False)
|
||||
return tabular_data
|
||||
|
||||
|
||||
@@ -352,14 +345,14 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
}
|
||||
|
||||
|
||||
def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
def generate_strategy_stats(pairlist: List[str],
|
||||
strategy: str,
|
||||
content: Dict[str, Any],
|
||||
min_date: datetime, max_date: datetime,
|
||||
market_change: float
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
:param btdata: Backtest data
|
||||
:param pairlist: List of pairs to backtest
|
||||
:param strategy: Strategy name
|
||||
:param content: Backtest result data in the format:
|
||||
{'results: results, 'config: config}}.
|
||||
@@ -372,11 +365,11 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
if not isinstance(results, DataFrame):
|
||||
return {}
|
||||
config = content['config']
|
||||
max_open_trades = min(config['max_open_trades'], len(btdata.keys()))
|
||||
max_open_trades = min(config['max_open_trades'], len(pairlist))
|
||||
start_balance = config['dry_run_wallet']
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
pair_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
|
||||
starting_balance=start_balance,
|
||||
results=results, skip_nan=False)
|
||||
|
||||
@@ -385,7 +378,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
|
||||
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
|
||||
results=results)
|
||||
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
left_open_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
|
||||
starting_balance=start_balance,
|
||||
results=results.loc[results['is_open']],
|
||||
skip_nan=True)
|
||||
@@ -435,7 +428,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
|
||||
'trades_per_day': round(len(results) / backtest_days, 2),
|
||||
'market_change': market_change,
|
||||
'pairlist': list(btdata.keys()),
|
||||
'pairlist': pairlist,
|
||||
'stake_amount': config['stake_amount'],
|
||||
'stake_currency': config['stake_currency'],
|
||||
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
|
||||
@@ -468,12 +461,14 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
}
|
||||
|
||||
try:
|
||||
max_drawdown, _, _, _, _ = calculate_max_drawdown(
|
||||
max_drawdown_legacy, _, _, _, _, _ = calculate_max_drawdown(
|
||||
results, value_col='profit_ratio')
|
||||
drawdown_abs, drawdown_start, drawdown_end, high_val, low_val = calculate_max_drawdown(
|
||||
results, value_col='profit_abs')
|
||||
(drawdown_abs, drawdown_start, drawdown_end, high_val, low_val,
|
||||
max_drawdown) = calculate_max_drawdown(
|
||||
results, value_col='profit_abs', starting_balance=start_balance)
|
||||
strat_stats.update({
|
||||
'max_drawdown': max_drawdown,
|
||||
'max_drawdown': max_drawdown_legacy, # Deprecated - do not use
|
||||
'max_drawdown_account': max_drawdown,
|
||||
'max_drawdown_abs': drawdown_abs,
|
||||
'drawdown_start': drawdown_start.strftime(DATETIME_PRINT_FORMAT),
|
||||
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
|
||||
@@ -493,6 +488,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
except ValueError:
|
||||
strat_stats.update({
|
||||
'max_drawdown': 0.0,
|
||||
'max_drawdown_account': 0.0,
|
||||
'max_drawdown_abs': 0.0,
|
||||
'max_drawdown_low': 0.0,
|
||||
'max_drawdown_high': 0.0,
|
||||
@@ -521,13 +517,13 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
|
||||
"""
|
||||
result: Dict[str, Any] = {'strategy': {}}
|
||||
market_change = calculate_market_change(btdata, 'close')
|
||||
|
||||
pairlist = list(btdata.keys())
|
||||
for strategy, content in all_results.items():
|
||||
strat_stats = generate_strategy_stats(btdata, strategy, content,
|
||||
strat_stats = generate_strategy_stats(pairlist, strategy, content,
|
||||
min_date, max_date, market_change=market_change)
|
||||
result['strategy'][strategy] = strat_stats
|
||||
|
||||
strategy_results = generate_strategy_comparison(all_results=all_results)
|
||||
strategy_results = generate_strategy_comparison(bt_stats=result['strategy'])
|
||||
|
||||
result['strategy_comparison'] = strategy_results
|
||||
|
||||
@@ -652,7 +648,7 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
headers.append('Drawdown')
|
||||
|
||||
# Align drawdown string on the center two space separator.
|
||||
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
|
||||
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
|
||||
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
|
||||
dd_pad_per = max([len(dd) for dd in drawdown])
|
||||
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
|
||||
@@ -737,7 +733,10 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
('Max balance', round_coin_value(strat_results['csum_max'],
|
||||
strat_results['stake_currency'])),
|
||||
|
||||
('Drawdown', f"{strat_results['max_drawdown']:.2%}"),
|
||||
# Compatibility to show old hyperopt results
|
||||
('Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
|
||||
if 'max_drawdown_account' in strat_results else (
|
||||
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
|
||||
('Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
|
||||
|
@@ -161,7 +161,7 @@ def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame,
|
||||
Add scatter points indicating max drawdown
|
||||
"""
|
||||
try:
|
||||
max_drawdown, highdate, lowdate, _, _ = calculate_max_drawdown(trades)
|
||||
_, highdate, lowdate, _, _, max_drawdown = calculate_max_drawdown(trades)
|
||||
|
||||
drawdown = go.Scatter(
|
||||
x=[highdate, lowdate],
|
||||
|
@@ -4,7 +4,6 @@ Volume PairList provider
|
||||
Provides dynamic pair list based on trade volumes
|
||||
"""
|
||||
import logging
|
||||
from functools import partial
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import arrow
|
||||
@@ -122,10 +121,17 @@ class VolumePairList(IPairList):
|
||||
else:
|
||||
# Use fresh pairlist
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
_pairlist = [k for k in self._exchange.get_markets(
|
||||
quote_currencies=[self._stake_currency],
|
||||
tradable_only=True, active_only=True).keys()]
|
||||
# No point in testing for blacklisted pairs...
|
||||
_pairlist = self.verify_blacklist(_pairlist, logger.info)
|
||||
|
||||
filtered_tickers = [
|
||||
v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
|
||||
and (self._use_range or v[self._sort_key] is not None))]
|
||||
and (self._use_range or v[self._sort_key] is not None)
|
||||
and v['symbol'] in _pairlist)]
|
||||
pairlist = [s['symbol'] for s in filtered_tickers]
|
||||
|
||||
pairlist = self.filter_pairlist(pairlist, tickers)
|
||||
@@ -181,12 +187,16 @@ class VolumePairList(IPairList):
|
||||
) in candles else None
|
||||
# in case of candle data calculate typical price and quoteVolume for candle
|
||||
if pair_candles is not None and not pair_candles.empty:
|
||||
pair_candles['typical_price'] = (pair_candles['high'] + pair_candles['low']
|
||||
+ pair_candles['close']) / 3
|
||||
pair_candles['quoteVolume'] = (
|
||||
pair_candles['volume'] * pair_candles['typical_price']
|
||||
)
|
||||
if self._exchange._ft_has["ohlcv_volume_currency"] == "base":
|
||||
pair_candles['typical_price'] = (pair_candles['high'] + pair_candles['low']
|
||||
+ pair_candles['close']) / 3
|
||||
|
||||
pair_candles['quoteVolume'] = (
|
||||
pair_candles['volume'] * pair_candles['typical_price']
|
||||
)
|
||||
else:
|
||||
# Exchange ohlcv data is in quote volume already.
|
||||
pair_candles['quoteVolume'] = pair_candles['volume']
|
||||
# ensure that a rolling sum over the lookback_period is built
|
||||
# if pair_candles contains more candles than lookback_period
|
||||
quoteVolume = (pair_candles['quoteVolume']
|
||||
@@ -207,7 +217,7 @@ class VolumePairList(IPairList):
|
||||
|
||||
# Validate whitelist to only have active market pairs
|
||||
pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
|
||||
pairs = self.verify_blacklist(pairs, partial(self.log_once, logmethod=logger.info))
|
||||
pairs = self.verify_blacklist(pairs, logmethod=logger.info)
|
||||
# Limit pairlist to the requested number of pairs
|
||||
pairs = pairs[:self._number_pairs]
|
||||
|
||||
|
@@ -55,7 +55,8 @@ class MaxDrawdown(IProtection):
|
||||
|
||||
# Drawdown is always positive
|
||||
try:
|
||||
drawdown, _, _, _, _ = calculate_max_drawdown(trades_df, value_col='close_profit')
|
||||
# TODO: This should use absolute profit calculation, considering account balance.
|
||||
drawdown, _, _, _, _, _ = calculate_max_drawdown(trades_df, value_col='close_profit')
|
||||
except ValueError:
|
||||
return False, None, None
|
||||
|
||||
|
Reference in New Issue
Block a user