consolidate and clean code

This commit is contained in:
robcaulk 2022-11-30 00:53:35 +01:00
parent 8ea58ab352
commit 4571aedb33
3 changed files with 29 additions and 57 deletions

View File

@ -79,11 +79,11 @@ To change your **features**, you **must** set a new `identifier` in the config t
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config. To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
### Backtest live models ### Backtest live collected predictions
FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study. FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in historic predictions file. The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in the historic predictions file.
### Downloading data to cover the full backtest period ### Downloading data to cover the full backtest period

View File

@ -75,7 +75,6 @@ class FreqaiDataKitchen:
self.training_features_list: List = [] self.training_features_list: List = []
self.model_filename: str = "" self.model_filename: str = ""
self.backtesting_results_path = Path() self.backtesting_results_path = Path()
self.backtesting_h5_data: HDFStore = {}
self.backtest_predictions_folder: str = "backtesting_predictions" self.backtest_predictions_folder: str = "backtesting_predictions"
self.live = live self.live = live
self.pair = pair self.pair = pair
@ -456,28 +455,6 @@ class FreqaiDataKitchen:
# print(tr_training_list, tr_backtesting_list) # print(tr_training_list, tr_backtesting_list)
return tr_training_list_timerange, tr_backtesting_list_timerange return tr_training_list_timerange, tr_backtesting_list_timerange
# def split_timerange_live_models(
# self
# ) -> Tuple[list, list]:
# tr_backtesting_list_timerange = []
# asset = self.pair.split("/")[0]
# if asset not in self.backtest_live_models_data["assets_end_dates"]:
# raise OperationalException(
# f"Model not available for pair {self.pair}. "
# "Please, try again after removing this pair from the configuration file."
# )
# asset_data = self.backtest_live_models_data["assets_end_dates"][asset]
# backtesting_timerange = self.backtest_live_models_data["backtesting_timerange"]
# model_end_dates = [x for x in asset_data]
# model_end_dates.append(backtesting_timerange.stopts)
# model_end_dates.sort()
# for index, item in enumerate(model_end_dates):
# if len(model_end_dates) > (index + 1):
# tr_to_add = TimeRange("date", "date", item, model_end_dates[index + 1])
# tr_backtesting_list_timerange.append(tr_to_add)
# return tr_backtesting_list_timerange, tr_backtesting_list_timerange
def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame: def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame:
""" """

View File

@ -55,7 +55,6 @@ class IFreqaiModel(ABC):
def __init__(self, config: Config) -> None: def __init__(self, config: Config) -> None:
self.config = config self.config = config
self.metadata: Dict[str, Any] = {}
self.assert_config(self.config) self.assert_config(self.config)
self.freqai_info: Dict[str, Any] = config["freqai"] self.freqai_info: Dict[str, Any] = config["freqai"]
self.data_split_parameters: Dict[str, Any] = config.get("freqai", {}).get( self.data_split_parameters: Dict[str, Any] = config.get("freqai", {}).get(
@ -102,7 +101,7 @@ class IFreqaiModel(ABC):
self.get_corr_dataframes: bool = True self.get_corr_dataframes: bool = True
self._threads: List[threading.Thread] = [] self._threads: List[threading.Thread] = []
self._stop_event = threading.Event() self._stop_event = threading.Event()
self.metadata = self.dd.load_global_metadata_from_disk() self.metadata: Dict[str, Any] = self.dd.load_global_metadata_from_disk()
self.data_provider: Optional[DataProvider] = None self.data_provider: Optional[DataProvider] = None
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1) self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
@ -148,18 +147,13 @@ class IFreqaiModel(ABC):
# the concatenated results for the full backtesting period back to the strategy. # the concatenated results for the full backtesting period back to the strategy.
elif not self.follow_mode: elif not self.follow_mode:
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"]) self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
if self.dk.backtest_live_models:
logger.info(
"Backtesting using historic predictions (live models)")
else:
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
dataframe = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
)
if not self.config.get("freqai_backtest_live_models", False): if not self.config.get("freqai_backtest_live_models", False):
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
dk = self.start_backtesting(dataframe, metadata, self.dk) dk = self.start_backtesting(dataframe, metadata, self.dk)
dataframe = dk.remove_features_from_df(dk.return_dataframe) dataframe = dk.remove_features_from_df(dk.return_dataframe)
else: else:
logger.info(
"Backtesting using historic predictions (live models)")
dk = self.start_backtesting_from_historic_predictions( dk = self.start_backtesting_from_historic_predictions(
dataframe, metadata, self.dk) dataframe, metadata, self.dk)
dataframe = dk.return_dataframe dataframe = dk.return_dataframe
@ -167,7 +161,6 @@ class IFreqaiModel(ABC):
self.clean_up() self.clean_up()
if self.live: if self.live:
self.inference_timer('stop', metadata["pair"]) self.inference_timer('stop', metadata["pair"])
self.set_start_dry_live_date(dataframe)
return dataframe return dataframe
@ -336,27 +329,6 @@ class IFreqaiModel(ABC):
return dk return dk
def start_backtesting_from_historic_predictions(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
:param dataframe: DataFrame = strategy passed dataframe
:param metadata: Dict = pair metadata
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:return:
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
pair = metadata["pair"]
dk.return_dataframe = dataframe
saved_dataframe = self.dd.historic_predictions[pair]
columns_to_drop = list(set(saved_dataframe.columns).intersection(
dk.return_dataframe.columns))
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
dk.return_dataframe = pd.merge(
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
# dk.return_dataframe = dk.return_dataframe[saved_dataframe.columns].fillna(0)
return dk
def start_live( def start_live(
self, dataframe: DataFrame, metadata: dict, strategy: IStrategy, dk: FreqaiDataKitchen self, dataframe: DataFrame, metadata: dict, strategy: IStrategy, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen: ) -> FreqaiDataKitchen:
@ -665,6 +637,8 @@ class IFreqaiModel(ABC):
self.dd.historic_predictions[pair] = pred_df self.dd.historic_predictions[pair] = pred_df
hist_preds_df = self.dd.historic_predictions[pair] hist_preds_df = self.dd.historic_predictions[pair]
self.set_start_dry_live_date(pred_df)
for label in hist_preds_df.columns: for label in hist_preds_df.columns:
if hist_preds_df[label].dtype == object: if hist_preds_df[label].dtype == object:
continue continue
@ -913,6 +887,27 @@ class IFreqaiModel(ABC):
pd.to_datetime(live_dataframe.tail(1)["date"].values[0]).timestamp()) pd.to_datetime(live_dataframe.tail(1)["date"].values[0]).timestamp())
self.update_metadata(metadata) self.update_metadata(metadata)
def start_backtesting_from_historic_predictions(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
:param dataframe: DataFrame = strategy passed dataframe
:param metadata: Dict = pair metadata
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
:return:
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
pair = metadata["pair"]
dk.return_dataframe = dataframe
saved_dataframe = self.dd.historic_predictions[pair]
columns_to_drop = list(set(saved_dataframe.columns).intersection(
dk.return_dataframe.columns))
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
dk.return_dataframe = pd.merge(
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
# dk.return_dataframe = dk.return_dataframe[saved_dataframe.columns].fillna(0)
return dk
# Following methods which are overridden by user made prediction models. # Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModel.py for an example. # See freqai/prediction_models/CatboostPredictionModel.py for an example.