Plot_profit.py: fix it and make it works with the new object model
This commit is contained in:
parent
9ae2491b1e
commit
45341bb246
@ -1,44 +0,0 @@
|
||||
{
|
||||
"max_open_trades": 3,
|
||||
"stake_currency": "BTC",
|
||||
"stake_amount": 0.005,
|
||||
"fiat_display_currency": "USD",
|
||||
"dry_run": true,
|
||||
"unfilledtimeout": 600,
|
||||
"bid_strategy": {
|
||||
"ask_last_balance": 0.0
|
||||
},
|
||||
"exchange": {
|
||||
"name": "bittrex",
|
||||
"key": "",
|
||||
"secret": "",
|
||||
"pair_whitelist": [
|
||||
"BTC_ETH",
|
||||
"BTC_LTC",
|
||||
"BTC_ETC",
|
||||
"BTC_DASH",
|
||||
"BTC_ZEC",
|
||||
"BTC_XLM",
|
||||
"BTC_NXT",
|
||||
"BTC_POWR",
|
||||
"BTC_ADA",
|
||||
"BTC_XMR"
|
||||
],
|
||||
"pair_blacklist": [
|
||||
"BTC_DOGE"
|
||||
]
|
||||
},
|
||||
"experimental": {
|
||||
"use_sell_signal": false,
|
||||
"sell_profit_only": false
|
||||
},
|
||||
"telegram": {
|
||||
"enabled": true,
|
||||
"token": "387056091:AAEVz29u5KwphICqGB6c63RwZjqCd7Kh6T4",
|
||||
"chat_id": "391939601"
|
||||
},
|
||||
"initial_state": "running",
|
||||
"internals": {
|
||||
"process_throttle_secs": 5
|
||||
}
|
||||
}
|
@ -1,31 +1,43 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Script to display profits
|
||||
|
||||
Mandatory Cli parameters:
|
||||
-p / --pair: pair to examine
|
||||
|
||||
Optional Cli parameters
|
||||
-c / --config: specify configuration file
|
||||
-s / --strategy: strategy to use
|
||||
--timerange: specify what timerange of data to use.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import json
|
||||
from typing import Dict
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
|
||||
from plotly import tools
|
||||
from plotly.offline import plot
|
||||
import plotly.graph_objs as go
|
||||
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.logger import Logger
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
import freqtrade.misc as misc
|
||||
from freqtrade.strategy.strategy import Strategy
|
||||
|
||||
import pprint
|
||||
|
||||
|
||||
def plot_parse_args(args):
|
||||
parser = misc.common_args_parser('Graph profits')
|
||||
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
|
||||
misc.backtesting_options(parser)
|
||||
misc.scripts_options(parser)
|
||||
return parser.parse_args(args)
|
||||
logger = Logger(name="Graph profits").get_logger()
|
||||
|
||||
|
||||
# data:: [ pair, profit-%, enter, exit, time, duration]
|
||||
# data:: ['BTC_XMR', 0.00537847, '1511176800', '1511178000', 5057, 1]
|
||||
# FIX: make use of the enter/exit dates to insert the
|
||||
# profit more precisely into the pg array
|
||||
def make_profit_array(data, px, filter_pairs=[]):
|
||||
# data:: ["BTC_ETH", 0.0023975, "1515598200", "1515602100", "2018-01-10 07:30:00+00:00", 65]
|
||||
def make_profit_array(data, px, min_date, interval, filter_pairs=[]):
|
||||
pg = np.zeros(px)
|
||||
# Go through the trades
|
||||
# and make an total profit
|
||||
@ -35,10 +47,11 @@ def make_profit_array(data, px, filter_pairs=[]):
|
||||
if filter_pairs and pair not in filter_pairs:
|
||||
continue
|
||||
profit = trade[1]
|
||||
tim = trade[4]
|
||||
dur = trade[5]
|
||||
ix = tim + dur - 1
|
||||
trade_sell_time = int(trade[3])
|
||||
|
||||
ix = define_index(min_date, trade_sell_time, interval)
|
||||
if ix < px:
|
||||
logger.debug('[%s]: Add profit %s on %s', pair, profit, trade[4])
|
||||
pg[ix] += profit
|
||||
|
||||
# rewrite the pg array to go from
|
||||
@ -64,47 +77,62 @@ def plot_profit(args) -> None:
|
||||
# We need to use the same pairs, same tick_interval
|
||||
# and same timeperiod as used in backtesting
|
||||
# to match the tickerdata against the profits-results
|
||||
timerange = Arguments.parse_timerange(args.timerange)
|
||||
|
||||
filter_pairs = args.pair
|
||||
|
||||
config = misc.load_config(args.config)
|
||||
config.update({'strategy': args.strategy})
|
||||
config = Configuration(args).get_config()
|
||||
|
||||
# Init strategy
|
||||
strategy = Strategy()
|
||||
strategy.init(config)
|
||||
try:
|
||||
analyze = Analyze({'strategy': config.get('strategy')})
|
||||
except AttributeError:
|
||||
logger.critical(
|
||||
'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"',
|
||||
config.get('strategy')
|
||||
)
|
||||
exit()
|
||||
|
||||
# Take pairs from the cli otherwise switch to the pair in the config file
|
||||
if args.pair:
|
||||
filter_pairs = args.pair
|
||||
filter_pairs = filter_pairs.split(',')
|
||||
else:
|
||||
filter_pairs = config['exchange']['pair_whitelist']
|
||||
|
||||
tick_interval = analyze.strategy.ticker_interval
|
||||
pairs = config['exchange']['pair_whitelist']
|
||||
|
||||
if filter_pairs:
|
||||
filter_pairs = filter_pairs.split(',')
|
||||
pairs = list(set(pairs) & set(filter_pairs))
|
||||
print('Filter, keep pairs %s' % pairs)
|
||||
logger.info('Filter, keep pairs %s' % pairs)
|
||||
|
||||
timerange = misc.parse_timerange(args.timerange)
|
||||
tickers = optimize.load_data(args.datadir, pairs=pairs,
|
||||
ticker_interval=strategy.ticker_interval,
|
||||
tickers = optimize.load_data(
|
||||
datadir=args.datadir,
|
||||
pairs=pairs,
|
||||
ticker_interval=tick_interval,
|
||||
refresh_pairs=False,
|
||||
timerange=timerange)
|
||||
dataframes = optimize.preprocess(tickers)
|
||||
timerange=timerange
|
||||
)
|
||||
dataframes = analyze.tickerdata_to_dataframe(tickers)
|
||||
|
||||
# NOTE: the dataframes are of unequal length,
|
||||
# 'dates' is an merged date array of them all.
|
||||
|
||||
dates = misc.common_datearray(dataframes)
|
||||
max_x = dates.size
|
||||
min_date = int(min(dates).timestamp())
|
||||
max_date = int(max(dates).timestamp())
|
||||
num_iterations = define_index(min_date, max_date, tick_interval) + 1
|
||||
|
||||
# Make an average close price of all the pairs that was involved.
|
||||
# this could be useful to gauge the overall market trend
|
||||
# We are essentially saying:
|
||||
# array <- sum dataframes[*]['close'] / num_items dataframes
|
||||
# FIX: there should be some onliner numpy/panda for this
|
||||
avgclose = np.zeros(max_x)
|
||||
avgclose = np.zeros(num_iterations)
|
||||
num = 0
|
||||
for pair, pair_data in dataframes.items():
|
||||
close = pair_data['close']
|
||||
maxprice = max(close) # Normalize price to [0,1]
|
||||
print('Pair %s has length %s' % (pair, len(close)))
|
||||
logger.info('Pair %s has length %s' % (pair, len(close)))
|
||||
for x in range(0, len(close)):
|
||||
avgclose[x] += close[x] / maxprice
|
||||
# avgclose += close
|
||||
@ -114,10 +142,16 @@ def plot_profit(args) -> None:
|
||||
# Load the profits results
|
||||
# And make an profits-growth array
|
||||
|
||||
try:
|
||||
filename = 'backtest-result.json'
|
||||
with open(filename) as file:
|
||||
data = json.load(file)
|
||||
pg = make_profit_array(data, max_x, filter_pairs)
|
||||
except FileNotFoundError:
|
||||
logger.critical('File "backtest-result.json" not found. This script require backtesting '
|
||||
'results to run.\nPlease run a backtesting with the parameter --export.')
|
||||
exit(0)
|
||||
|
||||
pg = make_profit_array(data, num_iterations, min_date, tick_interval, filter_pairs)
|
||||
|
||||
#
|
||||
# Plot the pairs average close prices, and total profit growth
|
||||
@ -128,6 +162,7 @@ def plot_profit(args) -> None:
|
||||
y=avgclose,
|
||||
name='Avg close price',
|
||||
)
|
||||
|
||||
profit = go.Scattergl(
|
||||
x=dates,
|
||||
y=pg,
|
||||
@ -140,7 +175,7 @@ def plot_profit(args) -> None:
|
||||
fig.append_trace(profit, 2, 1)
|
||||
|
||||
for pair in pairs:
|
||||
pg = make_profit_array(data, max_x, pair)
|
||||
pg = make_profit_array(data, num_iterations, min_date, tick_interval, pair)
|
||||
pair_profit = go.Scattergl(
|
||||
x=dates,
|
||||
y=pg,
|
||||
@ -151,6 +186,37 @@ def plot_profit(args) -> None:
|
||||
plot(fig, filename='freqtrade-profit-plot.html')
|
||||
|
||||
|
||||
def define_index(min_date, max_date, interval):
|
||||
"""
|
||||
Return the index of a specific date
|
||||
"""
|
||||
return int((max_date - min_date) / (interval * 60))
|
||||
|
||||
def plot_parse_args(args):
|
||||
"""
|
||||
Parse args passed to the script
|
||||
:param args: Cli arguments
|
||||
:return: args: Array with all arguments
|
||||
"""
|
||||
arguments = Arguments(args, 'Graph profits')
|
||||
arguments.scripts_options()
|
||||
arguments.common_args_parser()
|
||||
arguments.optimizer_shared_options(arguments.parser)
|
||||
arguments.backtesting_options(arguments.parser)
|
||||
|
||||
return arguments.parse_args()
|
||||
|
||||
|
||||
def main(sysargv: Dict) -> None:
|
||||
"""
|
||||
This function will initiate the bot and start the trading loop.
|
||||
:return: None
|
||||
"""
|
||||
logger.info('Starting Plot Dataframe')
|
||||
plot_profit(
|
||||
plot_parse_args(sysargv)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = plot_parse_args(sys.argv[1:])
|
||||
plot_profit(args)
|
||||
main(sys.argv[1:])
|
||||
|
Loading…
Reference in New Issue
Block a user