Merge branch 'master' into parabolic-sar

This commit is contained in:
Janne Sinivirta
2017-09-03 16:43:20 +03:00
8 changed files with 180 additions and 158 deletions

View File

@@ -4,7 +4,7 @@ import logging
import arrow
import requests
from pandas.io.json import json_normalize
from stockstats import StockDataFrame
from pandas import DataFrame
import talib.abstract as ta
@@ -13,11 +13,11 @@ logging.basicConfig(level=logging.DEBUG,
logger = logging.getLogger(__name__)
def get_ticker_dataframe(pair):
def get_ticker_dataframe(pair: str) -> DataFrame:
"""
Analyses the trend for the given pair
:param pair: pair as str in format BTC_ETH or BTC-ETH
:return: StockDataFrame
:return: DataFrame
"""
minimum_date = arrow.now() - timedelta(hours=6)
url = 'https://bittrex.com/Api/v2.0/pub/market/GetTicks'
@@ -41,35 +41,37 @@ def get_ticker_dataframe(pair):
'low': t['L'],
'date': t['T'],
} for t in sorted(data['result'], key=lambda k: k['T']) if arrow.get(t['T']) > minimum_date]
dataframe = StockDataFrame(json_normalize(data))
dataframe = DataFrame(json_normalize(data))
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.2)
# calculate StochRSI
window = 14
rsi = dataframe['rsi_{}'.format(window)]
rolling = rsi.rolling(window=window, center=False)
low = rolling.min()
high = rolling.max()
dataframe['stochrsi'] = (rsi - low) / (high - low)
stochrsi = ta.STOCHRSI(dataframe)
dataframe['stochrsi'] = stochrsi['fastd'] # values between 0-100, not 0-1
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macds'] = macd['macdsignal']
dataframe['macdh'] = macd['macdhist']
return dataframe
def populate_trends(dataframe):
def populate_trends(dataframe: DataFrame) -> DataFrame:
"""
Populates the trends for the given dataframe
:param dataframe: StockDataFrame
:return: StockDataFrame with populated trends
:param dataframe: DataFrame
:return: DataFrame with populated trends
"""
"""
dataframe.loc[
(dataframe['stochrsi'] < 0.20)
(dataframe['stochrsi'] < 20)
& (dataframe['close_30_ema'] > (1 + 0.0025) * dataframe['close_60_ema']),
'underpriced'
] = 1
"""
dataframe.loc[
(dataframe['stochrsi'] < 0.20)
(dataframe['stochrsi'] < 20)
& (dataframe['macd'] > dataframe['macds'])
& (dataframe['close'] > dataframe['sar']),
'underpriced'
@@ -78,7 +80,7 @@ def populate_trends(dataframe):
return dataframe
def get_buy_signal(pair):
def get_buy_signal(pair: str) -> bool:
"""
Calculates a buy signal based on StochRSI indicator
:param pair: pair in format BTC_ANT or BTC-ANT
@@ -98,10 +100,10 @@ def get_buy_signal(pair):
return signal
def plot_dataframe(dataframe, pair):
def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
"""
Plots the given dataframe
:param dataframe: StockDataFrame
:param dataframe: DataFrame
:param pair: pair as str
:return: None
"""
@@ -129,8 +131,8 @@ def plot_dataframe(dataframe, pair):
ax2.legend()
ax3.plot(dataframe.index.values, dataframe['stochrsi'], label='StochRSI')
ax3.plot(dataframe.index.values, [0.80] * len(dataframe.index.values))
ax3.plot(dataframe.index.values, [0.20] * len(dataframe.index.values))
ax3.plot(dataframe.index.values, [80] * len(dataframe.index.values))
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
ax3.legend()
# Fine-tune figure; make subplots close to each other and hide x ticks for