Refactor hyperopt parameters to separate file
This commit is contained in:
parent
063fc5174d
commit
42ae8ba6fb
@ -1,9 +1,9 @@
|
||||
# flake8: noqa: F401
|
||||
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date,
|
||||
timeframe_to_prev_date, timeframe_to_seconds)
|
||||
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IntParameter, RealParameter)
|
||||
from freqtrade.strategy.informative_decorator import informative
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.parameters import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IntParameter, RealParameter)
|
||||
from freqtrade.strategy.strategy_helper import (merge_informative_pair, stoploss_from_absolute,
|
||||
stoploss_from_open)
|
||||
|
@ -3,295 +3,19 @@ IHyperStrategy interface, hyperoptable Parameter class.
|
||||
This module defines a base class for auto-hyperoptable strategies.
|
||||
"""
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import suppress
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
from freqtrade.misc import deep_merge_dicts, json_load
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
|
||||
|
||||
with suppress(ImportError):
|
||||
from skopt.space import Integer, Real, Categorical
|
||||
from freqtrade.optimize.space import SKDecimal
|
||||
from typing import Any, Dict, Iterator, List, Tuple
|
||||
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, json_load
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
from freqtrade.strategy.parameters import BaseParameter
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseParameter(ABC):
|
||||
"""
|
||||
Defines a parameter that can be optimized by hyperopt.
|
||||
"""
|
||||
category: Optional[str]
|
||||
default: Any
|
||||
value: Any
|
||||
in_space: bool = False
|
||||
name: str
|
||||
|
||||
def __init__(self, *, default: Any, space: Optional[str] = None,
|
||||
optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.(Integer|Real|Categorical).
|
||||
"""
|
||||
if 'name' in kwargs:
|
||||
raise OperationalException(
|
||||
'Name is determined by parameter field name and can not be specified manually.')
|
||||
self.category = space
|
||||
self._space_params = kwargs
|
||||
self.value = default
|
||||
self.optimize = optimize
|
||||
self.load = load
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self.value})'
|
||||
|
||||
@abstractmethod
|
||||
def get_space(self, name: str) -> Union['Integer', 'Real', 'SKDecimal', 'Categorical']:
|
||||
"""
|
||||
Get-space - will be used by Hyperopt to get the hyperopt Space
|
||||
"""
|
||||
|
||||
|
||||
class NumericParameter(BaseParameter):
|
||||
""" Internal parameter used for Numeric purposes """
|
||||
float_or_int = Union[int, float]
|
||||
default: float_or_int
|
||||
value: float_or_int
|
||||
|
||||
def __init__(self, low: Union[float_or_int, Sequence[float_or_int]],
|
||||
high: Optional[float_or_int] = None, *, default: float_or_int,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable numeric parameter.
|
||||
Cannot be instantiated, but provides the validation for other numeric parameters
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none of entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.*.
|
||||
"""
|
||||
if high is not None and isinstance(low, Sequence):
|
||||
raise OperationalException(f'{self.__class__.__name__} space invalid.')
|
||||
if high is None or isinstance(low, Sequence):
|
||||
if not isinstance(low, Sequence) or len(low) != 2:
|
||||
raise OperationalException(f'{self.__class__.__name__} space must be [low, high]')
|
||||
self.low, self.high = low
|
||||
else:
|
||||
self.low = low
|
||||
self.high = high
|
||||
|
||||
super().__init__(default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
|
||||
class IntParameter(NumericParameter):
|
||||
default: int
|
||||
value: int
|
||||
|
||||
def __init__(self, low: Union[int, Sequence[int]], high: Optional[int] = None, *, default: int,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable integer parameter.
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none of entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Integer.
|
||||
"""
|
||||
|
||||
super().__init__(low=low, high=high, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'Integer':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Integer(low=self.low, high=self.high, name=name, **self._space_params)
|
||||
|
||||
@property
|
||||
def range(self):
|
||||
"""
|
||||
Get each value in this space as list.
|
||||
Returns a List from low to high (inclusive) in Hyperopt mode.
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
# Scikit-optimize ranges are "inclusive", while python's "range" is exclusive
|
||||
return range(self.low, self.high + 1)
|
||||
else:
|
||||
return range(self.value, self.value + 1)
|
||||
|
||||
|
||||
class RealParameter(NumericParameter):
|
||||
default: float
|
||||
value: float
|
||||
|
||||
def __init__(self, low: Union[float, Sequence[float]], high: Optional[float] = None, *,
|
||||
default: float, space: Optional[str] = None, optimize: bool = True,
|
||||
load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable floating point parameter with unlimited precision.
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none if entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Real.
|
||||
"""
|
||||
super().__init__(low=low, high=high, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'Real':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Real(low=self.low, high=self.high, name=name, **self._space_params)
|
||||
|
||||
|
||||
class DecimalParameter(NumericParameter):
|
||||
default: float
|
||||
value: float
|
||||
|
||||
def __init__(self, low: Union[float, Sequence[float]], high: Optional[float] = None, *,
|
||||
default: float, decimals: int = 3, space: Optional[str] = None,
|
||||
optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable decimal parameter with a limited precision.
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none if entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param decimals: A number of decimals after floating point to be included in testing.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Integer.
|
||||
"""
|
||||
self._decimals = decimals
|
||||
default = round(default, self._decimals)
|
||||
|
||||
super().__init__(low=low, high=high, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'SKDecimal':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return SKDecimal(low=self.low, high=self.high, decimals=self._decimals, name=name,
|
||||
**self._space_params)
|
||||
|
||||
@property
|
||||
def range(self):
|
||||
"""
|
||||
Get each value in this space as list.
|
||||
Returns a List from low to high (inclusive) in Hyperopt mode.
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
low = int(self.low * pow(10, self._decimals))
|
||||
high = int(self.high * pow(10, self._decimals)) + 1
|
||||
return [round(n * pow(0.1, self._decimals), self._decimals) for n in range(low, high)]
|
||||
else:
|
||||
return [self.value]
|
||||
|
||||
|
||||
class CategoricalParameter(BaseParameter):
|
||||
default: Any
|
||||
value: Any
|
||||
opt_range: Sequence[Any]
|
||||
|
||||
def __init__(self, categories: Sequence[Any], *, default: Optional[Any] = None,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param categories: Optimization space, [a, b, ...].
|
||||
:param default: A default value. If not specified, first item from specified space will be
|
||||
used.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Categorical.
|
||||
"""
|
||||
if len(categories) < 2:
|
||||
raise OperationalException(
|
||||
'CategoricalParameter space must be [a, b, ...] (at least two parameters)')
|
||||
self.opt_range = categories
|
||||
super().__init__(default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'Categorical':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Categorical(self.opt_range, name=name, **self._space_params)
|
||||
|
||||
@property
|
||||
def range(self):
|
||||
"""
|
||||
Get each value in this space as list.
|
||||
Returns a List of categories in Hyperopt mode.
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
return self.opt_range
|
||||
else:
|
||||
return [self.value]
|
||||
|
||||
|
||||
class BooleanParameter(CategoricalParameter):
|
||||
|
||||
def __init__(self, *, default: Optional[Any] = None,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable Boolean Parameter.
|
||||
It's a shortcut to `CategoricalParameter([True, False])`.
|
||||
:param default: A default value. If not specified, first item from specified space will be
|
||||
used.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Categorical.
|
||||
"""
|
||||
|
||||
categories = [True, False]
|
||||
super().__init__(categories=categories, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
|
||||
class HyperStrategyMixin:
|
||||
"""
|
||||
A helper base class which allows HyperOptAuto class to reuse implementations of buy/sell
|
||||
|
287
freqtrade/strategy/parameters.py
Normal file
287
freqtrade/strategy/parameters.py
Normal file
@ -0,0 +1,287 @@
|
||||
"""
|
||||
IHyperStrategy interface, hyperoptable Parameter class.
|
||||
This module defines a base class for auto-hyperoptable strategies.
|
||||
"""
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import suppress
|
||||
from typing import Any, Optional, Sequence, Union
|
||||
|
||||
|
||||
with suppress(ImportError):
|
||||
from skopt.space import Integer, Real, Categorical
|
||||
from freqtrade.optimize.space import SKDecimal
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseParameter(ABC):
|
||||
"""
|
||||
Defines a parameter that can be optimized by hyperopt.
|
||||
"""
|
||||
category: Optional[str]
|
||||
default: Any
|
||||
value: Any
|
||||
in_space: bool = False
|
||||
name: str
|
||||
|
||||
def __init__(self, *, default: Any, space: Optional[str] = None,
|
||||
optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.(Integer|Real|Categorical).
|
||||
"""
|
||||
if 'name' in kwargs:
|
||||
raise OperationalException(
|
||||
'Name is determined by parameter field name and can not be specified manually.')
|
||||
self.category = space
|
||||
self._space_params = kwargs
|
||||
self.value = default
|
||||
self.optimize = optimize
|
||||
self.load = load
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self.value})'
|
||||
|
||||
@abstractmethod
|
||||
def get_space(self, name: str) -> Union['Integer', 'Real', 'SKDecimal', 'Categorical']:
|
||||
"""
|
||||
Get-space - will be used by Hyperopt to get the hyperopt Space
|
||||
"""
|
||||
|
||||
|
||||
class NumericParameter(BaseParameter):
|
||||
""" Internal parameter used for Numeric purposes """
|
||||
float_or_int = Union[int, float]
|
||||
default: float_or_int
|
||||
value: float_or_int
|
||||
|
||||
def __init__(self, low: Union[float_or_int, Sequence[float_or_int]],
|
||||
high: Optional[float_or_int] = None, *, default: float_or_int,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable numeric parameter.
|
||||
Cannot be instantiated, but provides the validation for other numeric parameters
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none of entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.*.
|
||||
"""
|
||||
if high is not None and isinstance(low, Sequence):
|
||||
raise OperationalException(f'{self.__class__.__name__} space invalid.')
|
||||
if high is None or isinstance(low, Sequence):
|
||||
if not isinstance(low, Sequence) or len(low) != 2:
|
||||
raise OperationalException(f'{self.__class__.__name__} space must be [low, high]')
|
||||
self.low, self.high = low
|
||||
else:
|
||||
self.low = low
|
||||
self.high = high
|
||||
|
||||
super().__init__(default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
|
||||
class IntParameter(NumericParameter):
|
||||
default: int
|
||||
value: int
|
||||
|
||||
def __init__(self, low: Union[int, Sequence[int]], high: Optional[int] = None, *, default: int,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable integer parameter.
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none of entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Integer.
|
||||
"""
|
||||
|
||||
super().__init__(low=low, high=high, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'Integer':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Integer(low=self.low, high=self.high, name=name, **self._space_params)
|
||||
|
||||
@property
|
||||
def range(self):
|
||||
"""
|
||||
Get each value in this space as list.
|
||||
Returns a List from low to high (inclusive) in Hyperopt mode.
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
# Scikit-optimize ranges are "inclusive", while python's "range" is exclusive
|
||||
return range(self.low, self.high + 1)
|
||||
else:
|
||||
return range(self.value, self.value + 1)
|
||||
|
||||
|
||||
class RealParameter(NumericParameter):
|
||||
default: float
|
||||
value: float
|
||||
|
||||
def __init__(self, low: Union[float, Sequence[float]], high: Optional[float] = None, *,
|
||||
default: float, space: Optional[str] = None, optimize: bool = True,
|
||||
load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable floating point parameter with unlimited precision.
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none if entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Real.
|
||||
"""
|
||||
super().__init__(low=low, high=high, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'Real':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Real(low=self.low, high=self.high, name=name, **self._space_params)
|
||||
|
||||
|
||||
class DecimalParameter(NumericParameter):
|
||||
default: float
|
||||
value: float
|
||||
|
||||
def __init__(self, low: Union[float, Sequence[float]], high: Optional[float] = None, *,
|
||||
default: float, decimals: int = 3, space: Optional[str] = None,
|
||||
optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable decimal parameter with a limited precision.
|
||||
:param low: Lower end (inclusive) of optimization space or [low, high].
|
||||
:param high: Upper end (inclusive) of optimization space.
|
||||
Must be none if entire range is passed first parameter.
|
||||
:param default: A default value.
|
||||
:param decimals: A number of decimals after floating point to be included in testing.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Integer.
|
||||
"""
|
||||
self._decimals = decimals
|
||||
default = round(default, self._decimals)
|
||||
|
||||
super().__init__(low=low, high=high, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'SKDecimal':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return SKDecimal(low=self.low, high=self.high, decimals=self._decimals, name=name,
|
||||
**self._space_params)
|
||||
|
||||
@property
|
||||
def range(self):
|
||||
"""
|
||||
Get each value in this space as list.
|
||||
Returns a List from low to high (inclusive) in Hyperopt mode.
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
low = int(self.low * pow(10, self._decimals))
|
||||
high = int(self.high * pow(10, self._decimals)) + 1
|
||||
return [round(n * pow(0.1, self._decimals), self._decimals) for n in range(low, high)]
|
||||
else:
|
||||
return [self.value]
|
||||
|
||||
|
||||
class CategoricalParameter(BaseParameter):
|
||||
default: Any
|
||||
value: Any
|
||||
opt_range: Sequence[Any]
|
||||
|
||||
def __init__(self, categories: Sequence[Any], *, default: Optional[Any] = None,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param categories: Optimization space, [a, b, ...].
|
||||
:param default: A default value. If not specified, first item from specified space will be
|
||||
used.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Categorical.
|
||||
"""
|
||||
if len(categories) < 2:
|
||||
raise OperationalException(
|
||||
'CategoricalParameter space must be [a, b, ...] (at least two parameters)')
|
||||
self.opt_range = categories
|
||||
super().__init__(default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> 'Categorical':
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Categorical(self.opt_range, name=name, **self._space_params)
|
||||
|
||||
@property
|
||||
def range(self):
|
||||
"""
|
||||
Get each value in this space as list.
|
||||
Returns a List of categories in Hyperopt mode.
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
return self.opt_range
|
||||
else:
|
||||
return [self.value]
|
||||
|
||||
|
||||
class BooleanParameter(CategoricalParameter):
|
||||
|
||||
def __init__(self, *, default: Optional[Any] = None,
|
||||
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable Boolean Parameter.
|
||||
It's a shortcut to `CategoricalParameter([True, False])`.
|
||||
:param default: A default value. If not specified, first item from specified space will be
|
||||
used.
|
||||
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param optimize: Include parameter in hyperopt optimizations.
|
||||
:param load: Load parameter value from {space}_params.
|
||||
:param kwargs: Extra parameters to skopt.space.Categorical.
|
||||
"""
|
||||
|
||||
categories = [True, False]
|
||||
super().__init__(categories=categories, default=default, space=space, optimize=optimize,
|
||||
load=load, **kwargs)
|
@ -17,7 +17,7 @@ from freqtrade.optimize.hyperopt_auto import HyperOptAuto
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
||||
from freqtrade.optimize.space import SKDecimal
|
||||
from freqtrade.strategy.hyper import IntParameter
|
||||
from freqtrade.strategy import IntParameter
|
||||
from tests.conftest import (CURRENT_TEST_STRATEGY, get_args, log_has, log_has_re, patch_exchange,
|
||||
patched_configuration_load_config_file)
|
||||
|
||||
|
@ -16,7 +16,7 @@ from freqtrade.exceptions import OperationalException, StrategyError
|
||||
from freqtrade.optimize.space import SKDecimal
|
||||
from freqtrade.persistence import PairLocks, Trade
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
from freqtrade.strategy.hyper import (BaseParameter, BooleanParameter, CategoricalParameter,
|
||||
from freqtrade.strategy.parameters import (BaseParameter, BooleanParameter, CategoricalParameter,
|
||||
DecimalParameter, IntParameter, RealParameter)
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from tests.conftest import CURRENT_TEST_STRATEGY, TRADE_SIDES, log_has, log_has_re
|
||||
|
Loading…
Reference in New Issue
Block a user