Merge branch 'develop' into pr/nicolaspapp/6715

This commit is contained in:
Matthias
2022-04-30 14:21:12 +02:00
101 changed files with 5536 additions and 5053 deletions

View File

@@ -12,7 +12,7 @@ from freqtrade.constants import DEFAULT_CONFIG
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
ARGS_STRATEGY = ["strategy", "strategy_path"]
ARGS_STRATEGY = ["strategy", "strategy_path", "recursive_strategy_search"]
ARGS_TRADE = ["db_url", "sd_notify", "dry_run", "dry_run_wallet", "fee"]
@@ -37,7 +37,8 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized",
"recursive_strategy_search"]
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]

View File

@@ -83,6 +83,11 @@ AVAILABLE_CLI_OPTIONS = {
help='Reset sample files to their original state.',
action='store_true',
),
"recursive_strategy_search": Arg(
'--recursive-strategy-search',
help='Recursively search for a strategy in the strategies folder.',
action='store_true',
),
# Main options
"strategy": Arg(
'-s', '--strategy',

View File

@@ -41,7 +41,7 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason']))
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> None:
if print_colorized:
colorama_init(autoreset=True)
red = Fore.RED
@@ -55,7 +55,7 @@ def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
names = [s['name'] for s in objs]
objs_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location'].name,
'location': s['location'].relative_to(base_dir),
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
@@ -77,7 +77,8 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(directory, not args['print_one_column'])
strategy_objs = StrategyResolver.search_all_objects(
directory, not args['print_one_column'], config.get('recursive_strategy_search', False))
# Sort alphabetically
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
for obj in strategy_objs:
@@ -89,7 +90,7 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategy_objs]))
else:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
_print_objs_tabular(strategy_objs, config.get('print_colorized', False), directory)
def start_list_timeframes(args: Dict[str, Any]) -> None:

View File

@@ -248,6 +248,12 @@ class Configuration:
self._args_to_config(config, argname='strategy_list',
logstring='Using strategy list of {} strategies', logfun=len)
self._args_to_config(
config,
argname='recursive_strategy_search',
logstring='Recursively searching for a strategy in the strategies folder.',
)
self._args_to_config(config, argname='timeframe',
logstring='Overriding timeframe with Command line argument')

View File

@@ -14,7 +14,7 @@ PROCESS_THROTTLE_SECS = 5 # sec
HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
TIMEOUT_UNITS = ['minutes', 'seconds']
EXPORT_OPTIONS = ['none', 'trades']
EXPORT_OPTIONS = ['none', 'trades', 'signals']
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite:///tradesv3.dryrun.sqlite'
UNLIMITED_STAKE_AMOUNT = 'unlimited'

View File

@@ -12,7 +12,8 @@ import pandas as pd
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.exceptions import OperationalException
from freqtrade.misc import get_backtest_metadata_filename, json_load
from freqtrade.misc import json_load
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
from freqtrade.persistence import LocalTrade, Trade, init_db
@@ -149,7 +150,14 @@ def load_backtest_stats(filename: Union[Path, str]) -> Dict[str, Any]:
return data
def _load_and_merge_backtest_result(strategy_name: str, filename: Path, results: Dict[str, Any]):
def load_and_merge_backtest_result(strategy_name: str, filename: Path, results: Dict[str, Any]):
"""
Load one strategy from multi-strategy result
and merge it with results
:param strategy_name: Name of the strategy contained in the result
:param filename: Backtest-result-filename to load
:param results: dict to merge the result to.
"""
bt_data = load_backtest_stats(filename)
for k in ('metadata', 'strategy'):
results[k][strategy_name] = bt_data[k][strategy_name]
@@ -160,6 +168,30 @@ def _load_and_merge_backtest_result(strategy_name: str, filename: Path, results:
break
def _get_backtest_files(dirname: Path) -> List[Path]:
return list(reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))))
def get_backtest_resultlist(dirname: Path):
"""
Get list of backtest results read from metadata files
"""
results = []
for filename in _get_backtest_files(dirname):
metadata = load_backtest_metadata(filename)
if not metadata:
continue
for s, v in metadata.items():
results.append({
'filename': filename.name,
'strategy': s,
'run_id': v['run_id'],
'backtest_start_time': v['backtest_start_time'],
})
return results
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
min_backtest_date: datetime = None) -> Dict[str, Any]:
"""
@@ -179,7 +211,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
}
# Weird glob expression here avoids including .meta.json files.
for filename in reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))):
for filename in _get_backtest_files(dirname):
metadata = load_backtest_metadata(filename)
if not metadata:
# Files are sorted from newest to oldest. When file without metadata is encountered it
@@ -202,7 +234,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
if strategy_metadata['run_id'] == run_id:
del run_ids[strategy_name]
_load_and_merge_backtest_result(strategy_name, filename, results)
load_and_merge_backtest_result(strategy_name, filename, results)
if len(run_ids) == 0:
break
@@ -541,3 +573,14 @@ def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[f
csum_max = csum_df['sum'].max() + starting_balance
return csum_min, csum_max
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
"""
Calculate CAGR
:param days_passed: Days passed between start and ending balance
:param starting_balance: Starting balance
:param final_balance: Final balance to calculate CAGR against
:return: CAGR
"""
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1

File diff suppressed because it is too large Load Diff

View File

@@ -9,6 +9,7 @@ import logging
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from math import ceil
from threading import Lock
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
import arrow
@@ -64,6 +65,7 @@ class Exchange:
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_partial_candle": True,
"ohlcv_require_since": False,
# Check https://github.com/ccxt/ccxt/issues/10767 for removal of ohlcv_volume_currency
"ohlcv_volume_currency": "base", # "base" or "quote"
"tickers_have_quoteVolume": True,
@@ -95,6 +97,9 @@ class Exchange:
self._markets: Dict = {}
self._trading_fees: Dict[str, Any] = {}
self._leverage_tiers: Dict[str, List[Dict]] = {}
# Lock event loop. This is necessary to avoid race-conditions when using force* commands
# Due to funding fee fetching.
self._loop_lock = Lock()
self.loop = asyncio.new_event_loop()
asyncio.set_event_loop(self.loop)
self._config: Dict = {}
@@ -166,7 +171,7 @@ class Exchange:
self._api_async = self._init_ccxt(
exchange_config, ccxt_async, ccxt_kwargs=ccxt_async_config)
logger.info('Using Exchange "%s"', self.name)
logger.info(f'Using Exchange "{self.name}"')
if validate:
# Check if timeframe is available
@@ -368,6 +373,9 @@ class Exchange:
return (
market.get('quote', None) is not None
and market.get('base', None) is not None
and (self.precisionMode != TICK_SIZE
# Too low precision will falsify calculations
or market.get('precision', {}).get('price', None) > 1e-11)
and ((self.trading_mode == TradingMode.SPOT and self.market_is_spot(market))
or (self.trading_mode == TradingMode.MARGIN and self.market_is_margin(market))
or (self.trading_mode == TradingMode.FUTURES and self.market_is_future(market)))
@@ -551,7 +559,7 @@ class Exchange:
# Therefore we also show that.
raise OperationalException(
f"The ccxt library does not provide the list of timeframes "
f"for the exchange \"{self.name}\" and this exchange "
f"for the exchange {self.name} and this exchange "
f"is therefore not supported. ccxt fetchOHLCV: {self.exchange_has('fetchOHLCV')}")
if timeframe and (timeframe not in self.timeframes):
@@ -651,7 +659,7 @@ class Exchange:
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
"""
if self.markets[pair]['precision']['amount']:
if self.markets[pair]['precision']['amount'] is not None:
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=self.markets[pair]['precision']['amount'],
counting_mode=self.precisionMode,
@@ -781,7 +789,9 @@ class Exchange:
rate: float, leverage: float, params: Dict = {},
stop_loss: bool = False) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{datetime.now().timestamp()}'
_amount = self.amount_to_precision(pair, amount)
# Rounding here must respect to contract sizes
_amount = self._contracts_to_amount(
pair, self.amount_to_precision(pair, self._amount_to_contracts(pair, amount)))
dry_order: Dict[str, Any] = {
'id': order_id,
'symbol': pair,
@@ -1710,7 +1720,8 @@ class Exchange:
def _build_coroutine(self, pair: str, timeframe: str, candle_type: CandleType,
since_ms: Optional[int]) -> Coroutine:
if not since_ms and self.required_candle_call_count > 1:
if (not since_ms
and (self._ft_has["ohlcv_require_since"] or self.required_candle_call_count > 1)):
# Multiple calls for one pair - to get more history
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(timeframe)
move_to = one_call * self.required_candle_call_count
@@ -1770,7 +1781,8 @@ class Exchange:
async def gather_stuff():
return await asyncio.gather(*input_coro, return_exceptions=True)
results = self.loop.run_until_complete(gather_stuff())
with self._loop_lock:
results = self.loop.run_until_complete(gather_stuff())
for res in results:
if isinstance(res, Exception):
@@ -1829,17 +1841,18 @@ class Exchange:
pair, timeframe, since_ms, s
)
params = deepcopy(self._ft_has.get('ohlcv_params', {}))
candle_limit = self.ohlcv_candle_limit(timeframe)
if candle_type != CandleType.SPOT:
params.update({'price': candle_type})
if candle_type != CandleType.FUNDING_RATE:
data = await self._api_async.fetch_ohlcv(
pair, timeframe=timeframe, since=since_ms,
limit=self.ohlcv_candle_limit(timeframe), params=params)
limit=candle_limit, params=params)
else:
# Funding rate
data = await self._api_async.fetch_funding_rate_history(
pair, since=since_ms,
limit=self.ohlcv_candle_limit(timeframe))
limit=candle_limit)
# Convert funding rate to candle pattern
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
# Some exchanges sort OHLCV in ASC order and others in DESC.
@@ -2026,9 +2039,10 @@ class Exchange:
if not self.exchange_has("fetchTrades"):
raise OperationalException("This exchange does not support downloading Trades.")
return self.loop.run_until_complete(
self._async_get_trade_history(pair=pair, since=since,
until=until, from_id=from_id))
with self._loop_lock:
return self.loop.run_until_complete(
self._async_get_trade_history(pair=pair, since=since,
until=until, from_id=from_id))
@retrier
def _get_funding_fees_from_exchange(self, pair: str, since: Union[datetime, int]) -> float:
@@ -2137,8 +2151,8 @@ class Exchange:
def parse_leverage_tier(self, tier) -> Dict:
info = tier.get('info', {})
return {
'min': tier['notionalFloor'],
'max': tier['notionalCap'],
'min': tier['minNotional'],
'max': tier['maxNotional'],
'mmr': tier['maintenanceMarginRate'],
'lev': tier['maxLeverage'],
'maintAmt': float(info['cum']) if 'cum' in info else None,

View File

@@ -20,6 +20,7 @@ class Ftx(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"ohlcv_candle_limit": 1500,
"ohlcv_require_since": True,
"ohlcv_volume_currency": "quote",
"mark_ohlcv_price": "index",
"mark_ohlcv_timeframe": "1h",

View File

@@ -122,6 +122,8 @@ class FreqtradeBot(LoggingMixin):
self._schedule.every().day.at(t).do(update)
self.last_process = datetime(1970, 1, 1, tzinfo=timezone.utc)
self.strategy.bot_start()
def notify_status(self, msg: str) -> None:
"""
Public method for users of this class (worker, etc.) to send notifications
@@ -585,7 +587,6 @@ class FreqtradeBot(LoggingMixin):
Executes a limit buy for the given pair
:param pair: pair for which we want to create a LIMIT_BUY
:param stake_amount: amount of stake-currency for the pair
:param leverage: amount of leverage applied to this trade
:return: True if a buy order is created, false if it fails.
"""
time_in_force = self.strategy.order_time_in_force['entry']
@@ -664,16 +665,6 @@ class FreqtradeBot(LoggingMixin):
amount = safe_value_fallback(order, 'filled', 'amount')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
# TODO: this might be unnecessary, as we're calling it in update_trade_state.
isolated_liq = self.exchange.get_liquidation_price(
leverage=leverage,
pair=pair,
amount=amount,
open_rate=enter_limit_filled_price,
is_short=is_short
)
interest_rate = self.exchange.get_interest_rate()
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
base_currency = self.exchange.get_pair_base_currency(pair)
@@ -702,8 +693,6 @@ class FreqtradeBot(LoggingMixin):
timeframe=timeframe_to_minutes(self.config['timeframe']),
leverage=leverage,
is_short=is_short,
interest_rate=interest_rate,
liquidation_price=isolated_liq,
trading_mode=self.trading_mode,
funding_fees=funding_fees
)
@@ -1373,7 +1362,8 @@ class FreqtradeBot(LoggingMixin):
default_retval=proposed_limit_rate)(
pair=trade.pair, trade=trade,
current_time=datetime.now(timezone.utc),
proposed_rate=proposed_limit_rate, current_profit=current_profit)
proposed_rate=proposed_limit_rate, current_profit=current_profit,
exit_tag=exit_check.exit_reason)
limit = self.get_valid_price(custom_exit_price, proposed_limit_rate)

View File

@@ -2,13 +2,11 @@
Various tool function for Freqtrade and scripts
"""
import gzip
import hashlib
import logging
import re
from copy import deepcopy
from datetime import datetime
from pathlib import Path
from typing import Any, Iterator, List, Union
from typing import Any, Iterator, List
from typing.io import IO
from urllib.parse import urlparse
@@ -86,6 +84,22 @@ def file_dump_json(filename: Path, data: Any, is_zip: bool = False, log: bool =
logger.debug(f'done json to "{filename}"')
def file_dump_joblib(filename: Path, data: Any, log: bool = True) -> None:
"""
Dump object data into a file
:param filename: file to create
:param data: Object data to save
:return:
"""
import joblib
if log:
logger.info(f'dumping joblib to "{filename}"')
with open(filename, 'wb') as fp:
joblib.dump(data, fp)
logger.debug(f'done joblib dump to "{filename}"')
def json_load(datafile: IO) -> Any:
"""
load data with rapidjson
@@ -235,34 +249,3 @@ def parse_db_uri_for_logging(uri: str):
return uri
pwd = parsed_db_uri.netloc.split(':')[1].split('@')[0]
return parsed_db_uri.geturl().replace(f':{pwd}@', ':*****@')
def get_strategy_run_id(strategy) -> str:
"""
Generate unique identification hash for a backtest run. Identical config and strategy file will
always return an identical hash.
:param strategy: strategy object.
:return: hex string id.
"""
digest = hashlib.sha1()
config = deepcopy(strategy.config)
# Options that have no impact on results of individual backtest.
not_important_keys = ('strategy_list', 'original_config', 'telegram', 'api_server')
for k in not_important_keys:
if k in config:
del config[k]
# Explicitly allow NaN values (e.g. max_open_trades).
# as it does not matter for getting the hash.
digest.update(rapidjson.dumps(config, default=str,
number_mode=rapidjson.NM_NAN).encode('utf-8'))
with open(strategy.__file__, 'rb') as fp:
digest.update(fp.read())
return digest.hexdigest().lower()
def get_backtest_metadata_filename(filename: Union[Path, str]) -> Path:
"""Return metadata filename for specified backtest results file."""
filename = Path(filename)
return filename.parent / Path(f'{filename.stem}.meta{filename.suffix}')

View File

@@ -0,0 +1,40 @@
import hashlib
from copy import deepcopy
from pathlib import Path
from typing import Union
import rapidjson
def get_strategy_run_id(strategy) -> str:
"""
Generate unique identification hash for a backtest run. Identical config and strategy file will
always return an identical hash.
:param strategy: strategy object.
:return: hex string id.
"""
digest = hashlib.sha1()
config = deepcopy(strategy.config)
# Options that have no impact on results of individual backtest.
not_important_keys = ('strategy_list', 'original_config', 'telegram', 'api_server')
for k in not_important_keys:
if k in config:
del config[k]
# Explicitly allow NaN values (e.g. max_open_trades).
# as it does not matter for getting the hash.
digest.update(rapidjson.dumps(config, default=str,
number_mode=rapidjson.NM_NAN).encode('utf-8'))
# Include _ft_params_from_file - so changing parameter files cause cache eviction
digest.update(rapidjson.dumps(
strategy._ft_params_from_file, default=str, number_mode=rapidjson.NM_NAN).encode('utf-8'))
with open(strategy.__file__, 'rb') as fp:
digest.update(fp.read())
return digest.hexdigest().lower()
def get_backtest_metadata_filename(filename: Union[Path, str]) -> Path:
"""Return metadata filename for specified backtest results file."""
filename = Path(filename)
return filename.parent / Path(f'{filename.stem}.meta{filename.suffix}')

189
freqtrade/optimize/backtesting.py Normal file → Executable file
View File

@@ -9,6 +9,7 @@ from copy import deepcopy
from datetime import datetime, timedelta, timezone
from typing import Any, Dict, List, Optional, Tuple
import pandas as pd
from numpy import nan
from pandas import DataFrame
@@ -19,13 +20,15 @@ from freqtrade.data import history
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
from freqtrade.data.converter import trim_dataframe, trim_dataframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import BacktestState, CandleType, ExitCheckTuple, ExitType, TradingMode
from freqtrade.enums import (BacktestState, CandleType, ExitCheckTuple, ExitType, RunMode,
TradingMode)
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.misc import get_strategy_run_id
from freqtrade.mixins import LoggingMixin
from freqtrade.optimize.backtest_caching import get_strategy_run_id
from freqtrade.optimize.bt_progress import BTProgress
from freqtrade.optimize.optimize_reports import (generate_backtest_stats, show_backtest_results,
store_backtest_signal_candles,
store_backtest_stats)
from freqtrade.persistence import LocalTrade, Order, PairLocks, Trade
from freqtrade.plugins.pairlistmanager import PairListManager
@@ -51,6 +54,11 @@ ESHORT_IDX = 8 # Exit short
ENTER_TAG_IDX = 9
EXIT_TAG_IDX = 10
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
HEADERS = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
class Backtesting:
"""
@@ -73,6 +81,8 @@ class Backtesting:
self.run_ids: Dict[str, str] = {}
self.strategylist: List[IStrategy] = []
self.all_results: Dict[str, Dict] = {}
self.processed_dfs: Dict[str, Dict] = {}
self._exchange_name = self.config['exchange']['name']
self.exchange = ExchangeResolver.load_exchange(self._exchange_name, self.config)
self.dataprovider = DataProvider(self.config, self.exchange)
@@ -174,9 +184,10 @@ class Backtesting:
# Attach Wallets to Strategy baseclass
strategy.wallets = self.wallets
# Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway
# since a "perfect" stoploss-exit is assumed anyway
# And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False
self.strategy.bot_start()
def _load_protections(self, strategy: IStrategy):
if self.config.get('enable_protections', False):
@@ -259,10 +270,18 @@ class Backtesting:
candle_type=CandleType.from_string(self.exchange._ft_has["mark_ohlcv_price"])
)
# Combine data to avoid combining the data per trade.
unavailable_pairs = []
for pair in self.pairlists.whitelist:
if pair not in self.exchange._leverage_tiers:
unavailable_pairs.append(pair)
continue
self.futures_data[pair] = funding_rates_dict[pair].merge(
mark_rates_dict[pair], on='date', how="inner", suffixes=["_fund", "_mark"])
if unavailable_pairs:
raise OperationalException(
f"Pairs {', '.join(unavailable_pairs)} got no leverage tiers available. "
"It is therefore impossible to backtest with this pair at the moment.")
else:
self.futures_data = {}
@@ -300,10 +319,7 @@ class Backtesting:
:param processed: a processed dictionary with format {pair, data}, which gets cleared to
optimize memory usage!
"""
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
data: Dict = {}
self.progress.init_step(BacktestState.CONVERT, len(processed))
@@ -315,7 +331,7 @@ class Backtesting:
if not pair_data.empty:
# Cleanup from prior runs
pair_data.drop(headers[5:] + ['buy', 'sell'], axis=1, errors='ignore')
pair_data.drop(HEADERS[5:] + ['buy', 'sell'], axis=1, errors='ignore')
df_analyzed = self.strategy.advise_exit(
self.strategy.advise_entry(pair_data, {'pair': pair}),
@@ -328,13 +344,13 @@ class Backtesting:
self.dataprovider._set_cached_df(
pair, self.timeframe, df_analyzed, self.config['candle_type_def'])
# Create a copy of the dataframe before shifting, that way the buy signal/tag
# Create a copy of the dataframe before shifting, that way the entry signal/tag
# remains on the correct candle for callbacks.
df_analyzed = df_analyzed.copy()
# To avoid using data from future, we use buy/sell signals shifted
# To avoid using data from future, we use entry/exit signals shifted
# from the previous candle
for col in headers[5:]:
for col in HEADERS[5:]:
tag_col = col in ('enter_tag', 'exit_tag')
if col in df_analyzed.columns:
df_analyzed.loc[:, col] = df_analyzed.loc[:, col].replace(
@@ -346,27 +362,27 @@ class Backtesting:
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
data[pair] = df_analyzed[headers].values.tolist() if not df_analyzed.empty else []
data[pair] = df_analyzed[HEADERS].values.tolist() if not df_analyzed.empty else []
return data
def _get_close_rate(self, row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
def _get_close_rate(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
trade_dur: int) -> float:
"""
Get close rate for backtesting result
"""
# Special handling if high or low hit STOP_LOSS or ROI
if sell.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
return self._get_close_rate_for_stoploss(row, trade, sell, trade_dur)
elif sell.exit_type == (ExitType.ROI):
return self._get_close_rate_for_roi(row, trade, sell, trade_dur)
if exit.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
return self._get_close_rate_for_stoploss(row, trade, exit, trade_dur)
elif exit.exit_type == (ExitType.ROI):
return self._get_close_rate_for_roi(row, trade, exit, trade_dur)
else:
return row[OPEN_IDX]
def _get_close_rate_for_stoploss(self, row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
def _get_close_rate_for_stoploss(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
trade_dur: int) -> float:
# our stoploss was already lower than candle high,
# possibly due to a cancelled trade exit.
# sell at open price.
# exit at open price.
is_short = trade.is_short or False
leverage = trade.leverage or 1.0
side_1 = -1 if is_short else 1
@@ -380,7 +396,7 @@ class Backtesting:
# Special case: trailing triggers within same candle as trade opened. Assume most
# pessimistic price movement, which is moving just enough to arm stoploss and
# immediately going down to stop price.
if sell.exit_type == ExitType.TRAILING_STOP_LOSS and trade_dur == 0:
if exit.exit_type == ExitType.TRAILING_STOP_LOSS and trade_dur == 0:
if (
not self.strategy.use_custom_stoploss and self.strategy.trailing_stop
and self.strategy.trailing_only_offset_is_reached
@@ -399,7 +415,7 @@ class Backtesting:
else:
assert stop_rate < row[HIGH_IDX]
# Limit lower-end to candle low to avoid sells below the low.
# Limit lower-end to candle low to avoid exits below the low.
# This still remains "worst case" - but "worst realistic case".
if is_short:
return min(row[HIGH_IDX], stop_rate)
@@ -409,7 +425,7 @@ class Backtesting:
# Set close_rate to stoploss
return trade.stop_loss
def _get_close_rate_for_roi(self, row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
def _get_close_rate_for_roi(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
trade_dur: int) -> float:
is_short = trade.is_short or False
leverage = trade.leverage or 1.0
@@ -434,7 +450,7 @@ class Backtesting:
and roi_entry % self.timeframe_min == 0
and is_new_roi):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
# use Open rate if open_rate > calculated exit rate
return row[OPEN_IDX]
if (trade_dur == 0 and (
@@ -457,11 +473,11 @@ class Backtesting:
# ROI on opening candles with custom pricing can only
# trigger if the entry was at Open or lower wick.
# details: https: // github.com/freqtrade/freqtrade/issues/6261
# If open_rate is < open, only allow sells below the close on red candles.
# If open_rate is < open, only allow exits below the close on red candles.
raise ValueError("Opening candle ROI on red candles.")
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# cannot exit outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return min(max(close_rate, row[LOW_IDX]), row[HIGH_IDX])
@@ -496,7 +512,7 @@ class Backtesting:
""" Rate is within candle, therefore filled"""
return row[LOW_IDX] <= rate <= row[HIGH_IDX]
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
def _get_exit_trade_entry_for_candle(self, trade: LocalTrade,
row: Tuple) -> Optional[LocalTrade]:
# Check if we need to adjust our current positions
@@ -508,34 +524,35 @@ class Backtesting:
if check_adjust_entry:
trade = self._get_adjust_trade_entry_for_candle(trade, row)
sell_candle_time: datetime = row[DATE_IDX].to_pydatetime()
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
exit_ = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
sell = self.strategy.should_exit(
trade, row[OPEN_IDX], sell_candle_time, # type: ignore
enter=enter, exit_=exit_,
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
exit_ = self.strategy.should_exit(
trade, row[OPEN_IDX], exit_candle_time, # type: ignore
enter=enter, exit_=exit_sig,
low=row[LOW_IDX], high=row[HIGH_IDX]
)
if sell.exit_flag:
trade.close_date = sell_candle_time
if exit_.exit_flag:
trade.close_date = exit_candle_time
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
try:
closerate = self._get_close_rate(row, trade, sell, trade_dur)
closerate = self._get_close_rate(row, trade, exit_, trade_dur)
except ValueError:
return None
# call the custom exit price,with default value as previous closerate
current_profit = trade.calc_profit_ratio(closerate)
order_type = self.strategy.order_types['exit']
if sell.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT):
# Custom exit pricing only for sell-signals
if exit_.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT):
# Custom exit pricing only for exit-signals
if order_type == 'limit':
closerate = strategy_safe_wrapper(self.strategy.custom_exit_price,
default_retval=closerate)(
pair=trade.pair, trade=trade,
current_time=sell_candle_time,
proposed_rate=closerate, current_profit=current_profit)
current_time=exit_candle_time,
proposed_rate=closerate, current_profit=current_profit,
exit_tag=exit_.exit_reason)
# We can't place orders lower than current low.
# freqtrade does not support this in live, and the order would fill immediately
if trade.is_short:
@@ -549,12 +566,12 @@ class Backtesting:
pair=trade.pair, trade=trade, order_type='limit', amount=trade.amount,
rate=closerate,
time_in_force=time_in_force,
sell_reason=sell.exit_reason, # deprecated
exit_reason=sell.exit_reason,
current_time=sell_candle_time):
sell_reason=exit_.exit_reason, # deprecated
exit_reason=exit_.exit_reason,
current_time=exit_candle_time):
return None
trade.exit_reason = sell.exit_reason
trade.exit_reason = exit_.exit_reason
# Checks and adds an exit tag, after checking that the length of the
# row has the length for an exit tag column
@@ -562,6 +579,7 @@ class Backtesting:
len(row) > EXIT_TAG_IDX
and row[EXIT_TAG_IDX] is not None
and len(row[EXIT_TAG_IDX]) > 0
and exit_.exit_type in (ExitType.EXIT_SIGNAL,)
):
trade.exit_reason = row[EXIT_TAG_IDX]
@@ -569,8 +587,8 @@ class Backtesting:
order = Order(
id=self.order_id_counter,
ft_trade_id=trade.id,
order_date=sell_candle_time,
order_update_date=sell_candle_time,
order_date=exit_candle_time,
order_update_date=exit_candle_time,
ft_is_open=True,
ft_pair=trade.pair,
order_id=str(self.order_id_counter),
@@ -591,8 +609,8 @@ class Backtesting:
return None
def _get_sell_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
sell_candle_time: datetime = row[DATE_IDX].to_pydatetime()
def _get_exit_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
if self.trading_mode == TradingMode.FUTURES:
trade.funding_fees = self.exchange.calculate_funding_fees(
@@ -600,37 +618,35 @@ class Backtesting:
amount=trade.amount,
is_short=trade.is_short,
open_date=trade.open_date_utc,
close_date=sell_candle_time,
close_date=exit_candle_time,
)
if self.timeframe_detail and trade.pair in self.detail_data:
sell_candle_end = sell_candle_time + timedelta(minutes=self.timeframe_min)
exit_candle_end = exit_candle_time + timedelta(minutes=self.timeframe_min)
detail_data = self.detail_data[trade.pair]
detail_data = detail_data.loc[
(detail_data['date'] >= sell_candle_time) &
(detail_data['date'] < sell_candle_end)
(detail_data['date'] >= exit_candle_time) &
(detail_data['date'] < exit_candle_end)
].copy()
if len(detail_data) == 0:
# Fall back to "regular" data if no detail data was found for this candle
return self._get_sell_trade_entry_for_candle(trade, row)
return self._get_exit_trade_entry_for_candle(trade, row)
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
detail_data.loc[:, 'exit_short'] = row[ESHORT_IDX]
detail_data.loc[:, 'enter_tag'] = row[ENTER_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = row[EXIT_TAG_IDX]
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
for det_row in detail_data[headers].values.tolist():
res = self._get_sell_trade_entry_for_candle(trade, det_row)
for det_row in detail_data[HEADERS].values.tolist():
res = self._get_exit_trade_entry_for_candle(trade, det_row)
if res:
return res
return None
else:
return self._get_sell_trade_entry_for_candle(trade, row)
return self._get_exit_trade_entry_for_candle(trade, row)
def get_valid_price_and_stake(
self, pair: str, row: Tuple, propose_rate: float, stake_amount: Optional[float],
@@ -645,7 +661,7 @@ class Backtesting:
proposed_rate=propose_rate, entry_tag=entry_tag,
side=direction,
) # default value is the open rate
# We can't place orders higher than current high (otherwise it'd be a stop limit buy)
# We can't place orders higher than current high (otherwise it'd be a stop limit entry)
# which freqtrade does not support in live.
if direction == "short":
propose_rate = max(propose_rate, row[LOW_IDX])
@@ -809,13 +825,13 @@ class Backtesting:
if len(open_trades[pair]) > 0:
for trade in open_trades[pair]:
if trade.open_order_id and trade.nr_of_successful_entries == 0:
# Ignore trade if buy-order did not fill yet
# Ignore trade if entry-order did not fill yet
continue
sell_row = data[pair][-1]
exit_row = data[pair][-1]
trade.close_date = sell_row[DATE_IDX].to_pydatetime()
trade.close_date = exit_row[DATE_IDX].to_pydatetime()
trade.exit_reason = ExitType.FORCE_EXIT.value
trade.close(sell_row[OPEN_IDX], show_msg=False)
trade.close(exit_row[OPEN_IDX], show_msg=False)
LocalTrade.close_bt_trade(trade)
# Deepcopy object to have wallets update correctly
trade1 = deepcopy(trade)
@@ -865,7 +881,7 @@ class Backtesting:
# Remove trade due to entry timeout expiration.
return True
else:
# Close additional buy order
# Close additional entry order
del trade.orders[trade.orders.index(order)]
if order.side == trade.exit_side:
self.timedout_exit_orders += 1
@@ -878,7 +894,7 @@ class Backtesting:
self, data: Dict, pair: str, row_index: int, current_time: datetime) -> Optional[Tuple]:
try:
# Row is treated as "current incomplete candle".
# Buy / sell signals are shifted by 1 to compensate for this.
# entry / exit signals are shifted by 1 to compensate for this.
row = data[pair][row_index]
except IndexError:
# missing Data for one pair at the end.
@@ -943,14 +959,14 @@ class Backtesting:
self.dataprovider._set_dataframe_max_index(row_index)
for t in list(open_trades[pair]):
# 1. Cancel expired buy/sell orders.
# 1. Cancel expired entry/exit orders.
if self.check_order_cancel(t, current_time):
# Close trade due to buy timeout expiration.
# Close trade due to entry timeout expiration.
open_trade_count -= 1
open_trades[pair].remove(t)
self.wallets.update()
# 2. Process buys.
# 2. Process entries.
# without positionstacking, we can only have one open trade per pair.
# max_open_trades must be respected
# don't open on the last row
@@ -966,7 +982,7 @@ class Backtesting:
if trade:
# TODO: hacky workaround to avoid opening > max_open_trades
# This emulates previous behavior - not sure if this is correct
# Prevents buying if the trade-slot was freed in this candle
# Prevents entering if the trade-slot was freed in this candle
open_trade_count_start += 1
open_trade_count += 1
# logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
@@ -981,18 +997,18 @@ class Backtesting:
LocalTrade.add_bt_trade(trade)
self.wallets.update()
# 4. Create sell orders (if any)
# 4. Create exit orders (if any)
if not trade.open_order_id:
self._get_sell_trade_entry(trade, row) # Place sell order if necessary
self._get_exit_trade_entry(trade, row) # Place exit order if necessary
# 5. Process sell orders.
# 5. Process exit orders.
order = trade.select_order(trade.exit_side, is_open=True)
if order and self._get_order_filled(order.price, row):
trade.open_order_id = None
trade.close_date = current_time
trade.close(order.price, show_msg=False)
# logger.debug(f"{pair} - Backtesting sell {trade}")
# logger.debug(f"{pair} - Backtesting exit {trade}")
open_trade_count -= 1
open_trades[pair].remove(trade)
LocalTrade.close_bt_trade(trade)
@@ -1048,7 +1064,7 @@ class Backtesting:
"No data left after adjusting for startup candles.")
# Use preprocessed_tmp for date generation (the trimmed dataframe).
# Backtesting will re-trim the dataframes after buy/sell signal generation.
# Backtesting will re-trim the dataframes after entry/exit signal generation.
min_date, max_date = history.get_timerange(preprocessed_tmp)
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
@@ -1070,8 +1086,31 @@ class Backtesting:
})
self.all_results[self.strategy.get_strategy_name()] = results
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
self._generate_trade_signal_candles(preprocessed_tmp, results)
return min_date, max_date
def _generate_trade_signal_candles(self, preprocessed_df, bt_results):
signal_candles_only = {}
for pair in preprocessed_df.keys():
signal_candles_only_df = DataFrame()
pairdf = preprocessed_df[pair]
resdf = bt_results['results']
pairresults = resdf.loc[(resdf["pair"] == pair)]
if pairdf.shape[0] > 0:
for t, v in pairresults.open_date.items():
allinds = pairdf.loc[(pairdf['date'] < v)]
signal_inds = allinds.iloc[[-1]]
signal_candles_only_df = pd.concat([signal_candles_only_df, signal_inds])
signal_candles_only[pair] = signal_candles_only_df
self.processed_dfs[self.strategy.get_strategy_name()] = signal_candles_only
def _get_min_cached_backtest_date(self):
min_backtest_date = None
backtest_cache_age = self.config.get('backtest_cache', constants.BACKTEST_CACHE_DEFAULT)
@@ -1130,9 +1169,13 @@ class Backtesting:
else:
self.results = results
if self.config.get('export', 'none') == 'trades':
if self.config.get('export', 'none') in ('trades', 'signals'):
store_backtest_stats(self.config['exportfilename'], self.results)
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
store_backtest_signal_candles(self.config['exportfilename'], self.processed_dfs)
# Results may be mixed up now. Sort them so they follow --strategy-list order.
if 'strategy_list' in self.config and len(self.results) > 0:
self.results['strategy_comparison'] = sorted(

View File

@@ -44,6 +44,7 @@ class EdgeCli:
self.edge._timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
self.strategy.bot_start()
def start(self) -> None:
result = self.edge.calculate(self.config['exchange']['pair_whitelist'])

View File

@@ -10,7 +10,7 @@ import warnings
from datetime import datetime, timezone
from math import ceil
from pathlib import Path
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple
import progressbar
import rapidjson
@@ -290,7 +290,7 @@ class Hyperopt:
self.assign_params(params_dict, 'protection')
if HyperoptTools.has_space(self.config, 'roi'):
self.backtesting.strategy.minimal_roi = ( # type: ignore
self.backtesting.strategy.minimal_roi = (
self.custom_hyperopt.generate_roi_table(params_dict))
if HyperoptTools.has_space(self.config, 'stoploss'):
@@ -409,6 +409,51 @@ class Hyperopt:
# Store non-trimmed data - will be trimmed after signal generation.
dump(preprocessed, self.data_pickle_file)
def get_asked_points(self, n_points: int) -> Tuple[List[List[Any]], List[bool]]:
"""
Enforce points returned from `self.opt.ask` have not been already evaluated
Steps:
1. Try to get points using `self.opt.ask` first
2. Discard the points that have already been evaluated
3. Retry using `self.opt.ask` up to 3 times
4. If still some points are missing in respect to `n_points`, random sample some points
5. Repeat until at least `n_points` points in the `asked_non_tried` list
6. Return a list with length truncated at `n_points`
"""
def unique_list(a_list):
new_list = []
for item in a_list:
if item not in new_list:
new_list.append(item)
return new_list
i = 0
asked_non_tried: List[List[Any]] = []
is_random: List[bool] = []
while i < 5 and len(asked_non_tried) < n_points:
if i < 3:
self.opt.cache_ = {}
asked = unique_list(self.opt.ask(n_points=n_points * 5))
is_random = [False for _ in range(len(asked))]
else:
asked = unique_list(self.opt.space.rvs(n_samples=n_points * 5))
is_random = [True for _ in range(len(asked))]
is_random += [rand for x, rand in zip(asked, is_random)
if x not in self.opt.Xi
and x not in asked_non_tried]
asked_non_tried += [x for x in asked
if x not in self.opt.Xi
and x not in asked_non_tried]
i += 1
if asked_non_tried:
return (
asked_non_tried[:min(len(asked_non_tried), n_points)],
is_random[:min(len(asked_non_tried), n_points)]
)
else:
return self.opt.ask(n_points=n_points), [False for _ in range(n_points)]
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
logger.info(f"Using optimizer random state: {self.random_state}")
@@ -420,9 +465,10 @@ class Hyperopt:
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange.close()
self.backtesting.exchange._api = None # type: ignore
self.backtesting.exchange._api_async = None # type: ignore
self.backtesting.exchange._api = None
self.backtesting.exchange._api_async = None
self.backtesting.exchange.loop = None # type: ignore
self.backtesting.exchange._loop_lock = None # type: ignore
# self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore
@@ -473,7 +519,7 @@ class Hyperopt:
n_rest = (i + 1) * jobs - self.total_epochs
current_jobs = jobs - n_rest if n_rest > 0 else jobs
asked = self.opt.ask(n_points=current_jobs)
asked, is_random = self.get_asked_points(n_points=current_jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i)
self.opt.tell(asked, [v['loss'] for v in f_val])
@@ -492,6 +538,7 @@ class Hyperopt:
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
val['is_random'] = is_random[j]
self.print_results(val)
if is_best:

View File

@@ -41,7 +41,8 @@ class HyperoptTools():
"""
from freqtrade.resolvers.strategy_resolver import StrategyResolver
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(directory, False)
strategy_objs = StrategyResolver.search_all_objects(
directory, False, config.get('recursive_strategy_search', False))
strategies = [s for s in strategy_objs if s['name'] == strategy_name]
if strategies:
strategy = strategies[0]
@@ -310,6 +311,8 @@ class HyperoptTools():
if not has_drawdown:
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.max_drawdown_account'] = None
if 'is_random' not in trials.columns:
trials['is_random'] = False
# New mode, using backtest result for metrics
trials['results_metrics.winsdrawslosses'] = trials.apply(
@@ -322,12 +325,12 @@ class HyperoptTools():
'results_metrics.profit_total', 'results_metrics.holding_avg',
'results_metrics.max_drawdown',
'results_metrics.max_drawdown_account', 'results_metrics.max_drawdown_abs',
'loss', 'is_initial_point', 'is_best']]
'loss', 'is_initial_point', 'is_random', 'is_best']]
trials.columns = [
'Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
'Total profit', 'Profit', 'Avg duration', 'max_drawdown', 'max_drawdown_account',
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best'
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_random', 'is_best'
]
return trials
@@ -349,9 +352,11 @@ class HyperoptTools():
trials = HyperoptTools.prepare_trials_columns(trials, has_account_drawdown)
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '* '
trials.loc[trials['is_initial_point'] | trials['is_random'], 'Best'] = '* '
trials.loc[trials['is_best'], 'Best'] = 'Best'
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[
(trials['is_initial_point'] | trials['is_random']) & trials['is_best'],
'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Trades'] = trials['Trades'].astype(str)
# perc_multi = 1 if legacy_mode else 100
@@ -407,7 +412,7 @@ class HyperoptTools():
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
str(trials.loc[i][j]), Style.RESET_ALL)
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit', 'is_random'])
if remove_header > 0:
table = tabulate.tabulate(
trials.to_dict(orient='list'), tablefmt='orgtbl',

View File

@@ -9,10 +9,10 @@ from pandas import DataFrame, to_datetime
from tabulate import tabulate
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
from freqtrade.data.btanalysis import (calculate_csum, calculate_market_change,
from freqtrade.data.btanalysis import (calculate_cagr, calculate_csum, calculate_market_change,
calculate_max_drawdown)
from freqtrade.misc import (decimals_per_coin, file_dump_json, get_backtest_metadata_filename,
round_coin_value)
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
logger = logging.getLogger(__name__)
@@ -45,6 +45,29 @@ def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> N
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
def store_backtest_signal_candles(recordfilename: Path, candles: Dict[str, Dict]) -> Path:
"""
Stores backtest trade signal candles
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for directories, <directory>/backtest-result-<datetime>_signals.pkl will be used
as filename
:param stats: Dict containing the backtesting signal candles
"""
if recordfilename.is_dir():
filename = (recordfilename /
f'backtest-result-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}_signals.pkl')
else:
filename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}_signals.pkl'
)
file_dump_joblib(filename, candles)
return filename
def _get_line_floatfmt(stake_currency: str) -> List[str]:
"""
Generate floatformat (goes in line with _generate_result_line())
@@ -241,7 +264,7 @@ def generate_edge_table(results: dict) -> str:
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def _get_resample_from_period(period: str) -> str:
@@ -423,6 +446,7 @@ def generate_strategy_stats(pairlist: List[str],
'profit_total_abs': results['profit_abs'].sum(),
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']),
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
'backtest_start_ts': int(min_date.timestamp() * 1000),
'backtest_end': max_date.strftime(DATETIME_PRINT_FORMAT),
@@ -727,6 +751,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
strat_results['stake_currency'])),
('Total profit %', f"{strat_results['profit_total']:.2%}"),
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
('Trades per day', strat_results['trades_per_day']),
('Avg. daily profit %',
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),

View File

@@ -429,12 +429,10 @@ class LocalTrade():
def __repr__(self):
open_since = self.open_date.strftime(DATETIME_PRINT_FORMAT) if self.is_open else 'closed'
leverage = self.leverage or 1.0
is_short = self.is_short or False
return (
f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
f'is_short={is_short}, leverage={leverage}, '
f'is_short={self.is_short or False}, leverage={self.leverage or 1.0}, '
f'open_rate={self.open_rate:.8f}, open_since={open_since})'
)

View File

@@ -632,6 +632,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
IStrategy.dp = DataProvider(config, exchange)
strategy.bot_start()
plot_elements = init_plotscript(config, list(exchange.markets), strategy.startup_candle_count)
timerange = plot_elements['timerange']
trades = plot_elements['trades']

View File

@@ -23,7 +23,7 @@ class HyperOptLossResolver(IResolver):
object_type = IHyperOptLoss
object_type_str = "HyperoptLoss"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
initial_search_path = Path(__file__).parent.parent.joinpath('optimize/hyperopt_loss').resolve()
@staticmethod
def load_hyperoptloss(config: Dict) -> IHyperOptLoss:

View File

@@ -44,7 +44,7 @@ class IResolver:
@classmethod
def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None,
extra_dir: Optional[str] = None) -> List[Path]:
extra_dirs: List[str] = []) -> List[Path]:
abs_paths: List[Path] = []
if cls.initial_search_path:
@@ -53,9 +53,9 @@ class IResolver:
if user_subdir:
abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir))
if extra_dir:
# Add extra directory to the top of the search paths
abs_paths.insert(0, Path(extra_dir).resolve())
# Add extra directory to the top of the search paths
for dir in extra_dirs:
abs_paths.insert(0, Path(dir).resolve())
return abs_paths
@@ -164,9 +164,13 @@ class IResolver:
:return: Object instance or None
"""
extra_dirs: List[str] = []
if extra_dir:
extra_dirs.append(extra_dir)
abs_paths = cls.build_search_paths(config,
user_subdir=cls.user_subdir,
extra_dir=extra_dir)
extra_dirs=extra_dirs)
found_object = cls._load_object(paths=abs_paths, object_name=object_name,
kwargs=kwargs)
@@ -178,18 +182,25 @@ class IResolver:
)
@classmethod
def search_all_objects(cls, directory: Path,
enum_failed: bool) -> List[Dict[str, Any]]:
def search_all_objects(cls, directory: Path, enum_failed: bool,
recursive: bool = False) -> List[Dict[str, Any]]:
"""
Searches a directory for valid objects
:param directory: Path to search
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:param recursive: Recursively walk directory tree searching for strategies
:return: List of dicts containing 'name', 'class' and 'location' entries
"""
logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'")
objects = []
for entry in directory.iterdir():
if (
recursive and entry.is_dir()
and not entry.name.startswith('__')
and not entry.name.startswith('.')
):
objects.extend(cls.search_all_objects(entry, enum_failed, recursive=recursive))
# Only consider python files
if entry.suffix != '.py':
logger.debug('Ignoring %s', entry)

View File

@@ -7,8 +7,9 @@ import logging
import tempfile
from base64 import urlsafe_b64decode
from inspect import getfullargspec
from os import walk
from pathlib import Path
from typing import Any, Dict, Optional
from typing import Any, Dict, List, Optional
from freqtrade.configuration.config_validation import validate_migrated_strategy_settings
from freqtrade.constants import REQUIRED_ORDERTIF, REQUIRED_ORDERTYPES, USERPATH_STRATEGIES
@@ -216,15 +217,19 @@ class StrategyResolver(IResolver):
raise OperationalException(
"`populate_exit_trend` or `populate_sell_trend` must be implemented.")
strategy._populate_fun_len = len(getfullargspec(strategy.populate_indicators).args)
strategy._buy_fun_len = len(getfullargspec(strategy.populate_buy_trend).args)
strategy._sell_fun_len = len(getfullargspec(strategy.populate_sell_trend).args)
_populate_fun_len = len(getfullargspec(strategy.populate_indicators).args)
_buy_fun_len = len(getfullargspec(strategy.populate_buy_trend).args)
_sell_fun_len = len(getfullargspec(strategy.populate_sell_trend).args)
if any(x == 2 for x in [
strategy._populate_fun_len,
strategy._buy_fun_len,
strategy._sell_fun_len
_populate_fun_len,
_buy_fun_len,
_sell_fun_len
]):
strategy.INTERFACE_VERSION = 1
raise OperationalException(
"Strategy Interface v1 is no longer supported. "
"Please update your strategy to implement "
"`populate_indicators`, `populate_entry_trend` and `populate_exit_trend` "
"with the metadata argument. ")
return strategy
@staticmethod
@@ -237,10 +242,19 @@ class StrategyResolver(IResolver):
:param extra_dir: additional directory to search for the given strategy
:return: Strategy instance or None
"""
if config.get('recursive_strategy_search', False):
extra_dirs: List[str] = [
path[0] for path in walk(f"{config['user_data_dir']}/{USERPATH_STRATEGIES}")
] # sub-directories
else:
extra_dirs = []
if extra_dir:
extra_dirs.append(extra_dir)
abs_paths = StrategyResolver.build_search_paths(config,
user_subdir=USERPATH_STRATEGIES,
extra_dir=extra_dir)
extra_dirs=extra_dirs)
if ":" in strategy_name:
logger.info("loading base64 encoded strategy")

View File

@@ -1,13 +1,16 @@
import asyncio
import logging
from copy import deepcopy
from typing import Any, Dict, List
from fastapi import APIRouter, BackgroundTasks, Depends
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.data.btanalysis import get_backtest_resultlist, load_and_merge_backtest_result
from freqtrade.enums import BacktestState
from freqtrade.exceptions import DependencyException
from freqtrade.rpc.api_server.api_schemas import BacktestRequest, BacktestResponse
from freqtrade.rpc.api_server.api_schemas import (BacktestHistoryEntry, BacktestRequest,
BacktestResponse)
from freqtrade.rpc.api_server.deps import get_config, is_webserver_mode
from freqtrade.rpc.api_server.webserver import ApiServer
from freqtrade.rpc.rpc import RPCException
@@ -200,3 +203,30 @@ def api_backtest_abort(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest ended",
}
@router.get('/backtest/history', response_model=List[BacktestHistoryEntry], tags=['webserver', 'backtest'])
def api_backtest_history(config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
# Get backtest result history, read from metadata files
return get_backtest_resultlist(config['user_data_dir'] / 'backtest_results')
@router.get('/backtest/history/result', response_model=BacktestResponse, tags=['webserver', 'backtest'])
def api_backtest_history_result(filename: str, strategy: str, config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
# Get backtest result history, read from metadata files
fn = config['user_data_dir'] / 'backtest_results' / filename
results: Dict[str, Any] = {
'metadata': {},
'strategy': {},
'strategy_comparison': [],
}
load_and_merge_backtest_result(strategy, fn, results)
return {
"status": "ended",
"running": False,
"step": "",
"progress": 1,
"status_msg": "Historic result",
"backtest_result": results,
}

View File

@@ -421,6 +421,13 @@ class BacktestResponse(BaseModel):
backtest_result: Optional[Dict[str, Any]]
class BacktestHistoryEntry(BaseModel):
filename: str
strategy: str
run_id: str
backtest_start_time: int
class SysInfo(BaseModel):
cpu_pct: List[float]
ram_pct: float

View File

@@ -35,7 +35,8 @@ logger = logging.getLogger(__name__)
# 1.13: forcebuy supports stake_amount
# versions 2.xx -> futures/short branch
# 2.14: Add entry/exit orders to trade response
API_VERSION = 2.14
# 2.15: Add backtest history endpoints
API_VERSION = 2.15
# Public API, requires no auth.
router_public = APIRouter()
@@ -252,7 +253,8 @@ def list_strategies(config=Depends(get_config)):
directory = Path(config.get(
'strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
from freqtrade.resolvers.strategy_resolver import StrategyResolver
strategies = StrategyResolver.search_all_objects(directory, False)
strategies = StrategyResolver.search_all_objects(
directory, False, config.get('recursive_strategy_search', False))
strategies = sorted(strategies, key=lambda x: x['name'])
return {'strategies': [x['name'] for x in strategies]}

View File

@@ -2,7 +2,7 @@ import logging
from ipaddress import IPv4Address
from typing import Any, Dict
import rapidjson
import orjson
import uvicorn
from fastapi import Depends, FastAPI
from fastapi.middleware.cors import CORSMiddleware
@@ -24,7 +24,7 @@ class FTJSONResponse(JSONResponse):
Use rapidjson for responses
Handles NaN and Inf / -Inf in a javascript way by default.
"""
return rapidjson.dumps(content).encode("utf-8")
return orjson.dumps(content, option=orjson.OPT_SERIALIZE_NUMPY)
class ApiServer(RPCHandler):

View File

@@ -387,7 +387,7 @@ class Telegram(RPCHandler):
else:
return "\N{CROSS MARK}"
def _prepare_entry_details(self, filled_orders: List, base_currency: str, is_open: bool):
def _prepare_entry_details(self, filled_orders: List, quote_currency: str, is_open: bool):
"""
Prepare details of trade with entry adjustment enabled
"""
@@ -405,7 +405,7 @@ class Telegram(RPCHandler):
if x == 0:
lines.append(f"*Entry #{x+1}:*")
lines.append(
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {base_currency})")
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average Entry Price:* {cur_entry_average}")
else:
sumA = 0
@@ -429,7 +429,7 @@ class Telegram(RPCHandler):
lines.append("({})".format(cur_entry_datetime
.humanize(granularity=["day", "hour", "minute"])))
lines.append(
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {base_currency})")
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average Entry Price:* {cur_entry_average} "
f"({price_to_1st_entry:.2%} from 1st entry rate)")
lines.append(f"*Order filled at:* {order['order_filled_date']}")
@@ -472,7 +472,7 @@ class Telegram(RPCHandler):
"*Current Pair:* {pair}",
"*Direction:* " + ("`Short`" if r.get('is_short') else "`Long`"),
"*Leverage:* `{leverage}`" if r.get('leverage') else "",
"*Amount:* `{amount} ({stake_amount} {base_currency})`",
"*Amount:* `{amount} ({stake_amount} {quote_currency})`",
"*Enter Tag:* `{enter_tag}`" if r['enter_tag'] else "",
"*Exit Reason:* `{exit_reason}`" if r['exit_reason'] else "",
]
@@ -943,7 +943,7 @@ class Telegram(RPCHandler):
else:
fiat_currency = self._config.get('fiat_display_currency', '')
try:
statlist, head, fiat_profit_sum = self._rpc._rpc_status_table(
statlist, _, _ = self._rpc._rpc_status_table(
self._config['stake_currency'], fiat_currency)
except RPCException:
self._send_msg(msg='No open trade found.')

View File

@@ -23,7 +23,7 @@ class InformativeData:
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[Any], str]]] = None,
*,
candle_type: Optional[CandleType] = None,
candle_type: Optional[Union[CandleType, str]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to

View File

@@ -3,7 +3,6 @@ IStrategy interface
This module defines the interface to apply for strategies
"""
import logging
import warnings
from abc import ABC, abstractmethod
from datetime import datetime, timedelta, timezone
from typing import Dict, List, Optional, Tuple, Union
@@ -44,14 +43,11 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
# Strategy interface version
# Default to version 2
# Version 1 is the initial interface without metadata dict
# Version 1 is the initial interface without metadata dict - deprecated and no longer supported.
# Version 2 populate_* include metadata dict
# Version 3 - First version with short and leverage support
INTERFACE_VERSION: int = 3
_populate_fun_len: int = 0
_buy_fun_len: int = 0
_sell_fun_len: int = 0
_ft_params_from_file: Dict
# associated minimal roi
minimal_roi: Dict = {}
@@ -114,7 +110,7 @@ class IStrategy(ABC, HyperStrategyMixin):
# Class level variables (intentional) containing
# the dataprovider (dp) (access to other candles, historic data, ...)
# and wallets - access to the current balance.
dp: Optional[DataProvider]
dp: DataProvider
wallets: Optional[Wallets] = None
# Filled from configuration
stake_currency: str
@@ -197,6 +193,13 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
return self.populate_sell_trend(dataframe, metadata)
def bot_start(self, **kwargs) -> None:
"""
Called only once after bot instantiation.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
"""
pass
def bot_loop_start(self, **kwargs) -> None:
"""
Called at the start of the bot iteration (one loop).
@@ -206,18 +209,18 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
pass
def check_buy_timeout(self, pair: str, trade: Trade, order: dict,
def check_buy_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
DEPRECATED: Please use `check_entry_timeout` instead.
"""
return False
def check_entry_timeout(self, pair: str, trade: Trade, order: dict,
def check_entry_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
Check entry timeout function callback.
This method can be used to override the enter-timeout.
This method can be used to override the entry-timeout.
It is called whenever a limit entry order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
@@ -225,8 +228,8 @@ class IStrategy(ABC, HyperStrategyMixin):
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object.
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the entry order is cancelled.
@@ -234,30 +237,30 @@ class IStrategy(ABC, HyperStrategyMixin):
return self.check_buy_timeout(
pair=pair, trade=trade, order=order, current_time=current_time)
def check_sell_timeout(self, pair: str, trade: Trade, order: dict,
def check_sell_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
DEPRECATED: Please use `check_exit_timeout` instead.
"""
return False
def check_exit_timeout(self, pair: str, trade: Trade, order: dict,
def check_exit_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
Check sell timeout function callback.
Check exit timeout function callback.
This method can be used to override the exit-timeout.
It is called whenever a (long) limit sell order or (short) limit buy
has been created, and is not yet fully filled.
It is called whenever a limit exit order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the (long)sell/(short)buy-order is cancelled.
:return bool: When True is returned, then the exit-order is cancelled.
"""
return self.check_sell_timeout(
pair=pair, trade=trade, order=order, current_time=current_time)
@@ -359,7 +362,7 @@ class IStrategy(ABC, HyperStrategyMixin):
def custom_exit_price(self, pair: str, trade: Trade,
current_time: datetime, proposed_rate: float,
current_profit: float, **kwargs) -> float:
current_profit: float, exit_tag: Optional[str], **kwargs) -> float:
"""
Custom exit price logic, returning the new exit price.
@@ -372,6 +375,7 @@ class IStrategy(ABC, HyperStrategyMixin):
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param exit_tag: Exit reason.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New exit price value if provided
"""
@@ -1090,12 +1094,7 @@ class IStrategy(ABC, HyperStrategyMixin):
dataframe = _create_and_merge_informative_pair(
self, dataframe, metadata, inf_data, populate_fn)
if self._populate_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
return self.populate_indicators(dataframe) # type: ignore
else:
return self.populate_indicators(dataframe, metadata)
return self.populate_indicators(dataframe, metadata)
def advise_entry(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
@@ -1109,12 +1108,7 @@ class IStrategy(ABC, HyperStrategyMixin):
logger.debug(f"Populating enter signals for pair {metadata.get('pair')}.")
if self._buy_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
df = self.populate_buy_trend(dataframe) # type: ignore
else:
df = self.populate_entry_trend(dataframe, metadata)
df = self.populate_entry_trend(dataframe, metadata)
if 'enter_long' not in df.columns:
df = df.rename({'buy': 'enter_long', 'buy_tag': 'enter_tag'}, axis='columns')
@@ -1129,14 +1123,8 @@ class IStrategy(ABC, HyperStrategyMixin):
currently traded pair
:return: DataFrame with exit column
"""
logger.debug(f"Populating exit signals for pair {metadata.get('pair')}.")
if self._sell_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
df = self.populate_sell_trend(dataframe) # type: ignore
else:
df = self.populate_exit_trend(dataframe, metadata)
df = self.populate_exit_trend(dataframe, metadata)
if 'exit_long' not in df.columns:
df = df.rename({'sell': 'exit_long'}, axis='columns')
return df

View File

@@ -56,12 +56,18 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
# Combine the 2 dataframes
# all indicators on the informative sample MUST be calculated before this point
dataframe = pd.merge(dataframe, informative, left_on='date',
right_on=date_merge, how='left')
if ffill:
# https://pandas.pydata.org/docs/user_guide/merging.html#timeseries-friendly-merging
# merge_ordered - ffill method is 2.5x faster than seperate ffill()
dataframe = pd.merge_ordered(dataframe, informative, fill_method="ffill", left_on='date',
right_on=date_merge, how='left')
else:
dataframe = pd.merge(dataframe, informative, left_on='date',
right_on=date_merge, how='left')
dataframe = dataframe.drop(date_merge, axis=1)
if ffill:
dataframe = dataframe.ffill()
# if ffill:
# dataframe = dataframe.ffill()
return dataframe

View File

@@ -32,7 +32,7 @@ def custom_entry_price(self, pair: str, current_time: 'datetime', proposed_rate:
def custom_exit_price(self, pair: str, trade: 'Trade',
current_time: 'datetime', proposed_rate: float,
current_profit: float, **kwargs) -> float:
current_profit: float, exit_tag: Optional[str], **kwargs) -> float:
"""
Custom exit price logic, returning the new exit price.
@@ -45,6 +45,7 @@ def custom_exit_price(self, pair: str, trade: 'Trade',
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param exit_tag: Exit reason.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New exit price value if provided
"""
@@ -170,7 +171,8 @@ def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount:
"""
return True
def check_entry_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
"""
Check entry timeout function callback.
This method can be used to override the entry-timeout.
@@ -183,14 +185,16 @@ def check_entry_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs)
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object.
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is cancelled.
:return bool: When True is returned, then the entry order is cancelled.
"""
return False
def check_exit_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
"""
Check exit timeout function callback.
This method can be used to override the exit-timeout.
@@ -203,8 +207,9 @@ def check_exit_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object.
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the exit-order is cancelled.
"""