Merge branch 'develop' into pr/nicolaspapp/6715
This commit is contained in:
73
docs/advanced-backtesting.md
Normal file
73
docs/advanced-backtesting.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Advanced Backtesting Analysis
|
||||
|
||||
## Analyze the buy/entry and sell/exit tags
|
||||
|
||||
It can be helpful to understand how a strategy behaves according to the buy/entry tags used to
|
||||
mark up different buy conditions. You might want to see more complex statistics about each buy and
|
||||
sell condition above those provided by the default backtesting output. You may also want to
|
||||
determine indicator values on the signal candle that resulted in a trade opening.
|
||||
|
||||
!!! Note
|
||||
The following buy reason analysis is only available for backtesting, *not hyperopt*.
|
||||
|
||||
We need to run backtesting with the `--export` option set to `signals` to enable the exporting of
|
||||
signals **and** trades:
|
||||
|
||||
``` bash
|
||||
freqtrade backtesting -c <config.json> --timeframe <tf> --strategy <strategy_name> --timerange=<timerange> --export=signals
|
||||
```
|
||||
|
||||
This will tell freqtrade to output a pickled dictionary of strategy, pairs and corresponding
|
||||
DataFrame of the candles that resulted in buy signals. Depending on how many buys your strategy
|
||||
makes, this file may get quite large, so periodically check your `user_data/backtest_results`
|
||||
folder to delete old exports.
|
||||
|
||||
To analyze the buy tags, we need to use the `buy_reasons.py` script from
|
||||
[froggleston's repo](https://github.com/froggleston/freqtrade-buyreasons). Follow the instructions
|
||||
in their README to copy the script into your `freqtrade/scripts/` folder.
|
||||
|
||||
Before running your next backtest, make sure you either delete your old backtest results or run
|
||||
backtesting with the `--cache none` option to make sure no cached results are used.
|
||||
|
||||
If all goes well, you should now see a `backtest-result-{timestamp}_signals.pkl` file in the
|
||||
`user_data/backtest_results` folder.
|
||||
|
||||
Now run the `buy_reasons.py` script, supplying a few options:
|
||||
|
||||
``` bash
|
||||
python3 scripts/buy_reasons.py -c <config.json> -s <strategy_name> -t <timerange> -g0,1,2,3,4
|
||||
```
|
||||
|
||||
The `-g` option is used to specify the various tabular outputs, ranging from the simplest (0)
|
||||
to the most detailed per pair, per buy and per sell tag (4). More options are available by
|
||||
running with the `-h` option.
|
||||
|
||||
### Tuning the buy tags and sell tags to display
|
||||
|
||||
To show only certain buy and sell tags in the displayed output, use the following two options:
|
||||
|
||||
```
|
||||
--enter_reason_list : Comma separated list of enter signals to analyse. Default: "all"
|
||||
--exit_reason_list : Comma separated list of exit signals to analyse. Default: "stop_loss,trailing_stop_loss"
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```bash
|
||||
python3 scripts/buy_reasons.py -c <config.json> -s <strategy_name> -t <timerange> -g0,1,2,3,4 --enter_reason_list "enter_tag_a,enter_tag_b" --exit_reason_list "roi,custom_exit_tag_a,stop_loss"
|
||||
```
|
||||
|
||||
### Outputting signal candle indicators
|
||||
|
||||
The real power of the buy_reasons.py script comes from the ability to print out the indicator
|
||||
values present on signal candles to allow fine-grained investigation and tuning of buy signal
|
||||
indicators. To print out a column for a given set of indicators, use the `--indicator-list`
|
||||
option:
|
||||
|
||||
```bash
|
||||
python3 scripts/buy_reasons.py -c <config.json> -s <strategy_name> -t <timerange> -g0,1,2,3,4 --enter_reason_list "enter_tag_a,enter_tag_b" --exit_reason_list "roi,custom_exit_tag_a,stop_loss" --indicator_list "rsi,rsi_1h,bb_lowerband,ema_9,macd,macdsignal"
|
||||
```
|
||||
|
||||
The indicators have to be present in your strategy's main DataFrame (either for your main
|
||||
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
|
||||
output.
|
@@ -20,7 +20,8 @@ usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[--dry-run-wallet DRY_RUN_WALLET]
|
||||
[--timeframe-detail TIMEFRAME_DETAIL]
|
||||
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
|
||||
[--export {none,trades}] [--export-filename PATH]
|
||||
[--export {none,trades,signals}]
|
||||
[--export-filename PATH]
|
||||
[--breakdown {day,week,month} [{day,week,month} ...]]
|
||||
[--cache {none,day,week,month}]
|
||||
|
||||
@@ -63,18 +64,17 @@ optional arguments:
|
||||
`30m`, `1h`, `1d`).
|
||||
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
|
||||
Provide a space-separated list of strategies to
|
||||
backtest. Please note that timeframe needs to be
|
||||
set either in config or via command line. When using
|
||||
this together with `--export trades`, the strategy-
|
||||
name is injected into the filename (so `backtest-
|
||||
data.json` becomes `backtest-data-SampleStrategy.json`
|
||||
--export {none,trades}
|
||||
backtest. Please note that timeframe needs to be set
|
||||
either in config or via command line. When using this
|
||||
together with `--export trades`, the strategy-name is
|
||||
injected into the filename (so `backtest-data.json`
|
||||
becomes `backtest-data-SampleStrategy.json`
|
||||
--export {none,trades,signals}
|
||||
Export backtest results (default: trades).
|
||||
--export-filename PATH
|
||||
Save backtest results to the file with this filename.
|
||||
Requires `--export` to be set as well. Example:
|
||||
`--export-filename=user_data/backtest_results/backtest
|
||||
_today.json`
|
||||
--export-filename PATH, --backtest-filename PATH
|
||||
Use this filename for backtest results.Requires
|
||||
`--export` to be set as well. Example: `--export-filen
|
||||
ame=user_data/backtest_results/backtest_today.json`
|
||||
--breakdown {day,week,month} [{day,week,month} ...]
|
||||
Show backtesting breakdown per [day, week, month].
|
||||
--cache {none,day,week,month}
|
||||
@@ -299,6 +299,7 @@ A backtesting result will look like that:
|
||||
| Final balance | 0.01762792 BTC |
|
||||
| Absolute profit | 0.00762792 BTC |
|
||||
| Total profit % | 76.2% |
|
||||
| CAGR % | 460.87% |
|
||||
| Trades per day | 3.575 |
|
||||
| Avg. stake amount | 0.001 BTC |
|
||||
| Total trade volume | 0.429 BTC |
|
||||
@@ -388,6 +389,7 @@ It contains some useful key metrics about performance of your strategy on backte
|
||||
| Final balance | 0.01762792 BTC |
|
||||
| Absolute profit | 0.00762792 BTC |
|
||||
| Total profit % | 76.2% |
|
||||
| CAGR % | 460.87% |
|
||||
| Avg. stake amount | 0.001 BTC |
|
||||
| Total trade volume | 0.429 BTC |
|
||||
| | |
|
||||
|
@@ -11,7 +11,7 @@ Per default, the bot loads the configuration from the `config.json` file, locate
|
||||
|
||||
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
|
||||
|
||||
If you used the [Quick start](installation.md/#quick-start) method for installing
|
||||
If you used the [Quick start](installation.md/#quick-start) method for installing
|
||||
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
|
||||
|
||||
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
|
||||
@@ -64,7 +64,7 @@ This is similar to using multiple `--config` parameters, but simpler in usage as
|
||||
"config-private.json"
|
||||
]
|
||||
```
|
||||
|
||||
|
||||
``` bash
|
||||
freqtrade trade --config user_data/config.json <...>
|
||||
```
|
||||
@@ -100,7 +100,7 @@ This is similar to using multiple `--config` parameters, but simpler in usage as
|
||||
"stake_amount": "unlimited",
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
Resulting combined configuration:
|
||||
|
||||
``` json title="Result"
|
||||
@@ -173,6 +173,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
||||
| `order_types` | Configure order-types depending on the action (`"entry"`, `"exit"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
|
||||
| `order_time_in_force` | Configure time in force for entry and exit orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
|
||||
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
|
||||
| `recursive_strategy_search` | Set to `true` to recursively search sub-directories inside `user_data/strategies` for a strategy. <br> **Datatype:** Boolean
|
||||
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
|
||||
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
|
||||
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
|
||||
|
@@ -122,5 +122,6 @@ Best avoid relative paths, since this starts at the storage location of the jupy
|
||||
|
||||
* [Strategy debugging](strategy_analysis_example.md) - also available as Jupyter notebook (`user_data/notebooks/strategy_analysis_example.ipynb`)
|
||||
* [Plotting](plotting.md)
|
||||
* [Tag Analysis](advanced-backtesting.md)
|
||||
|
||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
||||
|
@@ -64,7 +64,10 @@ Binance supports [time_in_force](configuration.md#understand-order_time_in_force
|
||||
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
|
||||
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
|
||||
|
||||
### Binance Futures' order pricing
|
||||
### Binance Futures
|
||||
|
||||
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
|
||||
Violating these rules will result in a trading restriction.
|
||||
|
||||
When trading on Binance Futures market, orderbook must be used because there is no price ticker data for futures.
|
||||
|
||||
|
@@ -51,6 +51,14 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
|
||||
- [X] [OKX](https://okx.com/) (Former OKEX)
|
||||
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
|
||||
|
||||
### Experimentally, freqtrade also supports futures on the following exchanges:
|
||||
|
||||
- [X] [Binance](https://www.binance.com/)
|
||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||
- [X] [OKX](https://okx.com/).
|
||||
|
||||
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
|
||||
|
||||
### Community tested
|
||||
|
||||
Exchanges confirmed working by the community:
|
||||
|
@@ -9,4 +9,4 @@ window.MathJax = {
|
||||
ignoreHtmlClass: ".*|",
|
||||
processHtmlClass: "arithmatex"
|
||||
}
|
||||
};
|
||||
};
|
||||
|
@@ -1,5 +1,5 @@
|
||||
mkdocs==1.3.0
|
||||
mkdocs-material==8.2.9
|
||||
mkdocs-material==8.2.10
|
||||
mdx_truly_sane_lists==1.2
|
||||
pymdown-extensions==9.3
|
||||
pymdown-extensions==9.4
|
||||
jinja2==3.1.1
|
||||
|
@@ -7,6 +7,7 @@ Depending on the callback used, they may be called when entering / exiting a tra
|
||||
|
||||
Currently available callbacks:
|
||||
|
||||
* [`bot_start()`](#bot-start)
|
||||
* [`bot_loop_start()`](#bot-loop-start)
|
||||
* [`custom_stake_amount()`](#stake-size-management)
|
||||
* [`custom_exit()`](#custom-exit-signal)
|
||||
@@ -21,6 +22,29 @@ Currently available callbacks:
|
||||
!!! Tip "Callback calling sequence"
|
||||
You can find the callback calling sequence in [bot-basics](bot-basics.md#bot-execution-logic)
|
||||
|
||||
## Bot start
|
||||
|
||||
A simple callback which is called once when the strategy is loaded.
|
||||
This can be used to perform actions that must only be performed once and runs after dataprovider and wallet are set
|
||||
|
||||
``` python
|
||||
import requests
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def bot_start(self, **kwargs) -> None:
|
||||
"""
|
||||
Called only once after bot instantiation.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
"""
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
# Assign this to the class by using self.*
|
||||
# can then be used by populate_* methods
|
||||
self.cust_remote_data = requests.get('https://some_remote_source.example.com')
|
||||
|
||||
```
|
||||
## Bot loop start
|
||||
|
||||
A simple callback which is called once at the start of every bot throttling iteration (roughly every 5 seconds, unless configured differently).
|
||||
@@ -122,11 +146,11 @@ See [Dataframe access](strategy-advanced.md#dataframe-access) for more informati
|
||||
|
||||
## Custom stoploss
|
||||
|
||||
Called for open trade every throttling iteration (roughly every 5 seconds) until a trade is closed.
|
||||
Called for open trade every iteration (roughly every 5 seconds) until a trade is closed.
|
||||
|
||||
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
|
||||
|
||||
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade).
|
||||
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss (before this method is called for the first time for a trade), and is still mandatory.
|
||||
|
||||
The method must return a stoploss value (float / number) as a percentage of the current price.
|
||||
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
|
||||
@@ -365,30 +389,30 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
|
||||
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
|
||||
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
new_entryprice = dataframe['bollinger_10_lowerband'].iat[-1]
|
||||
|
||||
|
||||
return new_entryprice
|
||||
|
||||
def custom_exit_price(self, pair: str, trade: Trade,
|
||||
current_time: datetime, proposed_rate: float,
|
||||
current_profit: float, **kwargs) -> float:
|
||||
current_profit: float, exit_tag: Optional[str], **kwargs) -> float:
|
||||
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
new_exitprice = dataframe['bollinger_10_upperband'].iat[-1]
|
||||
|
||||
|
||||
return new_exitprice
|
||||
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
|
||||
**Example**:
|
||||
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
|
||||
**Example**:
|
||||
If the new_entryprice is 97, the proposed_rate is 100 and the `custom_price_max_distance_ratio` is set to 2%, The retained valid custom entry price will be 98, which is 2% below the current (proposed) rate.
|
||||
|
||||
!!! Warning "Backtesting"
|
||||
@@ -418,7 +442,7 @@ The function must return either `True` (cancel order) or `False` (keep order ali
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.persistence import Trade, Order
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
@@ -430,7 +454,7 @@ class AwesomeStrategy(IStrategy):
|
||||
'exit': 60 * 25
|
||||
}
|
||||
|
||||
def check_entry_timeout(self, pair: str, trade: 'Trade', order: dict,
|
||||
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date_utc < current_time - timedelta(minutes=5):
|
||||
return True
|
||||
@@ -441,7 +465,7 @@ class AwesomeStrategy(IStrategy):
|
||||
return False
|
||||
|
||||
|
||||
def check_exit_timeout(self, pair: str, trade: Trade, order: dict,
|
||||
def check_exit_timeout(self, pair: str, trade: Trade, order: 'Order',
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date_utc < current_time - timedelta(minutes=5):
|
||||
return True
|
||||
@@ -459,7 +483,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.persistence import Trade, Order
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
@@ -471,22 +495,22 @@ class AwesomeStrategy(IStrategy):
|
||||
'exit': 60 * 25
|
||||
}
|
||||
|
||||
def check_entry_timeout(self, pair: str, trade: Trade, order: dict,
|
||||
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['bids'][0][0]
|
||||
# Cancel buy order if price is more than 2% above the order.
|
||||
if current_price > order['price'] * 1.02:
|
||||
if current_price > order.price * 1.02:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_exit_timeout(self, pair: str, trade: Trade, order: dict,
|
||||
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['asks'][0][0]
|
||||
# Cancel sell order if price is more than 2% below the order.
|
||||
if current_price < order['price'] * 0.98:
|
||||
if current_price < order.price * 0.98:
|
||||
return True
|
||||
return False
|
||||
```
|
||||
@@ -508,7 +532,7 @@ class AwesomeStrategy(IStrategy):
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
|
||||
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
|
||||
side: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a entry order.
|
||||
@@ -616,35 +640,35 @@ from freqtrade.persistence import Trade
|
||||
|
||||
|
||||
class DigDeeperStrategy(IStrategy):
|
||||
|
||||
|
||||
position_adjustment_enable = True
|
||||
|
||||
|
||||
# Attempts to handle large drops with DCA. High stoploss is required.
|
||||
stoploss = -0.30
|
||||
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
|
||||
# Example specific variables
|
||||
max_entry_position_adjustment = 3
|
||||
# This number is explained a bit further down
|
||||
max_dca_multiplier = 5.5
|
||||
|
||||
|
||||
# This is called when placing the initial order (opening trade)
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: float, max_stake: float,
|
||||
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
||||
|
||||
|
||||
# We need to leave most of the funds for possible further DCA orders
|
||||
# This also applies to fixed stakes
|
||||
return proposed_stake / self.max_dca_multiplier
|
||||
|
||||
|
||||
def adjust_trade_position(self, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, min_stake: float,
|
||||
max_stake: float, **kwargs):
|
||||
"""
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be increased.
|
||||
This means extra buy orders with additional fees.
|
||||
|
||||
|
||||
:param trade: trade object.
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Current buy rate.
|
||||
@@ -654,7 +678,7 @@ class DigDeeperStrategy(IStrategy):
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: Stake amount to adjust your trade
|
||||
"""
|
||||
|
||||
|
||||
if current_profit > -0.05:
|
||||
return None
|
||||
|
||||
|
@@ -93,7 +93,7 @@ from freqtrade.data.btanalysis import load_backtest_data, load_backtest_stats
|
||||
|
||||
# if backtest_dir points to a directory, it'll automatically load the last backtest file.
|
||||
backtest_dir = config["user_data_dir"] / "backtest_results"
|
||||
# backtest_dir can also point to a specific file
|
||||
# backtest_dir can also point to a specific file
|
||||
# backtest_dir = config["user_data_dir"] / "backtest_results/backtest-result-2020-07-01_20-04-22.json"
|
||||
```
|
||||
|
||||
|
@@ -183,11 +183,11 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
``` python hl_lines="2 6"
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def check_entry_timeout(self, pair: str, trade: 'Trade', order: dict,
|
||||
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
return False
|
||||
|
||||
def check_exit_timeout(self, pair: str, trade: 'Trade', order: dict,
|
||||
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
||||
current_time: datetime, **kwargs) -> bool:
|
||||
return False
|
||||
```
|
||||
|
Reference in New Issue
Block a user