use cloudpickle in place of pickle. define Paths once in data_drawer.

This commit is contained in:
robcaulk
2022-07-22 17:37:51 +02:00
parent accc629e32
commit 40f00196eb
2 changed files with 31 additions and 54 deletions

View File

@@ -2,7 +2,6 @@ import copy
import datetime
import json
import logging
import pickle as pk
import shutil
from pathlib import Path
from typing import Any, Dict, List, Tuple
@@ -11,6 +10,7 @@ import numpy as np
import numpy.typing as npt
import pandas as pd
from joblib import dump, load # , Parallel, delayed # used for auto distribution assignment
from joblib.externals import cloudpickle
from pandas import DataFrame
from sklearn import linear_model
from sklearn.metrics.pairwise import pairwise_distances
@@ -130,7 +130,7 @@ class FreqaiDataKitchen:
)
if self.freqai_config.get("feature_parameters", {}).get("principal_component_analysis"):
pk.dump(
cloudpickle.dump(
self.pca, open(self.data_path / str(self.model_filename + "_pca_object.pkl"), "wb")
)
@@ -192,7 +192,7 @@ class FreqaiDataKitchen:
)
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
self.pca = pk.load(
self.pca = cloudpickle.load(
open(self.data_path / str(self.model_filename + "_pca_object.pkl"), "rb")
)
@@ -433,7 +433,7 @@ class FreqaiDataKitchen:
tr_training_list_timerange = []
tr_backtesting_list_timerange = []
first = True
# within_config_timerange = True
while True:
if not first:
timerange_train.startts = timerange_train.startts + bt_period
@@ -475,7 +475,7 @@ class FreqaiDataKitchen:
:df: Dataframe containing all candles to run the entire backtest. Here
it is sliced down to just the present training period.
"""
# timerange = TimeRange.parse_timerange(tr)
start = datetime.datetime.fromtimestamp(timerange.startts, tz=datetime.timezone.utc)
stop = datetime.datetime.fromtimestamp(timerange.stopts, tz=datetime.timezone.utc)
df = df.loc[df["date"] >= start, :]
@@ -1132,32 +1132,6 @@ class FreqaiDataKitchen:
# Functions containing useful data manpulation examples. but not actively in use.
# def build_feature_list(self, config: dict, metadata: dict) -> list:
# """
# SUPERCEDED BY self.find_features()
# Build the list of features that will be used to filter
# the full dataframe. Feature list is construced from the
# user configuration file.
# :params:
# :config: Canonical freqtrade config file containing all
# user defined input in config['freqai] dictionary.
# """
# features = []
# for tf in config["freqai"]["timeframes"]:
# for ft in config["freqai"]["base_features"]:
# for n in range(config["freqai"]["feature_parameters"]["shift"] + 1):
# shift = ""
# if n > 0:
# shift = "_shift-" + str(n)
# features.append(metadata['pair'].split("/")[0] + "-" + ft + shift + "_" + tf)
# for p in config["freqai"]["corr_pairlist"]:
# if metadata['pair'] in p:
# continue # avoid duplicate features
# features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
# # logger.info("number of features %s", len(features))
# return features
# Possibly phasing these outlier removal methods below out in favor of
# use_SVM_to_remove_outliers (computationally more efficient and apparently higher performance).
# But these have good data manipulation examples, so keep them commented here for now.