Create BaseRegression model - designed to reduce code duplication across currently available models.
This commit is contained in:
parent
607455919e
commit
3fc92b1b21
104
freqtrade/freqai/prediction_models/BaseRegressionModel.py
Normal file
104
freqtrade/freqai/prediction_models/BaseRegressionModel.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class BaseRegressionModel(IFreqaiModel):
|
||||||
|
"""
|
||||||
|
User created prediction model. The class needs to override three necessary
|
||||||
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
|
||||||
|
"""
|
||||||
|
User uses this function to add any additional return values to the dataframe.
|
||||||
|
e.g.
|
||||||
|
dataframe['volatility'] = dk.volatility_values
|
||||||
|
"""
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def train(
|
||||||
|
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||||
|
) -> Tuple[DataFrame, DataFrame]:
|
||||||
|
"""
|
||||||
|
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||||
|
for storing, saving, loading, and analyzing the data.
|
||||||
|
:params:
|
||||||
|
:unfiltered_dataframe: Full dataframe for the current training period
|
||||||
|
:metadata: pair metadata from strategy.
|
||||||
|
:returns:
|
||||||
|
:model: Trained model which can be used to inference (self.predict)
|
||||||
|
"""
|
||||||
|
|
||||||
|
logger.info("--------------------Starting training " f"{pair} --------------------")
|
||||||
|
|
||||||
|
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||||
|
features_filtered, labels_filtered = dk.filter_features(
|
||||||
|
unfiltered_dataframe,
|
||||||
|
dk.training_features_list,
|
||||||
|
dk.label_list,
|
||||||
|
training_filter=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# split data into train/test data.
|
||||||
|
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||||
|
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
||||||
|
# normalize all data based on train_dataset only
|
||||||
|
data_dictionary = dk.normalize_data(data_dictionary)
|
||||||
|
|
||||||
|
# optional additional data cleaning/analysis
|
||||||
|
self.data_cleaning_train(dk)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
||||||
|
)
|
||||||
|
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||||
|
|
||||||
|
model = self.fit(data_dictionary)
|
||||||
|
|
||||||
|
logger.info(f"--------------------done training {pair}--------------------")
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
||||||
|
) -> Tuple[DataFrame, DataFrame]:
|
||||||
|
"""
|
||||||
|
Filter the prediction features data and predict with it.
|
||||||
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||||
|
:return:
|
||||||
|
:pred_df: dataframe containing the predictions
|
||||||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
|
"""
|
||||||
|
|
||||||
|
dk.find_features(unfiltered_dataframe)
|
||||||
|
filtered_dataframe, _ = dk.filter_features(
|
||||||
|
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||||
|
)
|
||||||
|
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||||
|
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||||
|
|
||||||
|
# optional additional data cleaning/analysis
|
||||||
|
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||||
|
|
||||||
|
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||||
|
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||||
|
|
||||||
|
for label in dk.label_list:
|
||||||
|
pred_df[label] = (
|
||||||
|
(pred_df[label] + 1)
|
||||||
|
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
|
||||||
|
/ 2
|
||||||
|
) + dk.data["labels_min"][label]
|
||||||
|
|
||||||
|
return (pred_df, dk.do_predict)
|
@ -1,75 +1,21 @@
|
|||||||
import logging
|
import logging
|
||||||
from typing import Any, Dict, Tuple
|
from typing import Any, Dict
|
||||||
|
|
||||||
from catboost import CatBoostRegressor, Pool
|
from catboost import CatBoostRegressor, Pool
|
||||||
from pandas import DataFrame
|
|
||||||
|
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class CatboostPredictionModel(IFreqaiModel):
|
class CatboostPredictionModel(BaseRegressionModel):
|
||||||
"""
|
"""
|
||||||
User created prediction model. The class needs to override three necessary
|
User created prediction model. The class needs to override three necessary
|
||||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
|
|
||||||
"""
|
|
||||||
User uses this function to add any additional return values to the dataframe.
|
|
||||||
e.g.
|
|
||||||
dataframe['volatility'] = dk.volatility_values
|
|
||||||
"""
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def train(
|
|
||||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
|
||||||
) -> Tuple[DataFrame, DataFrame]:
|
|
||||||
"""
|
|
||||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
|
||||||
for storing, saving, loading, and analyzing the data.
|
|
||||||
:params:
|
|
||||||
:unfiltered_dataframe: Full dataframe for the current training period
|
|
||||||
:metadata: pair metadata from strategy.
|
|
||||||
:returns:
|
|
||||||
:model: Trained model which can be used to inference (self.predict)
|
|
||||||
"""
|
|
||||||
|
|
||||||
logger.info("--------------------Starting training " f"{pair} --------------------")
|
|
||||||
|
|
||||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
|
||||||
features_filtered, labels_filtered = dk.filter_features(
|
|
||||||
unfiltered_dataframe,
|
|
||||||
dk.training_features_list,
|
|
||||||
dk.label_list,
|
|
||||||
training_filter=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# split data into train/test data.
|
|
||||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
|
||||||
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
|
||||||
# normalize all data based on train_dataset only
|
|
||||||
data_dictionary = dk.normalize_data(data_dictionary)
|
|
||||||
|
|
||||||
# optional additional data cleaning/analysis
|
|
||||||
self.data_cleaning_train(dk)
|
|
||||||
|
|
||||||
logger.info(
|
|
||||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
|
||||||
)
|
|
||||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
|
||||||
|
|
||||||
model = self.fit(data_dictionary)
|
|
||||||
|
|
||||||
logger.info(f"--------------------done training {pair}--------------------")
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict) -> Any:
|
def fit(self, data_dictionary: Dict) -> Any:
|
||||||
"""
|
"""
|
||||||
User sets up the training and test data to fit their desired model here
|
User sets up the training and test data to fit their desired model here
|
||||||
@ -99,37 +45,3 @@ class CatboostPredictionModel(IFreqaiModel):
|
|||||||
model.fit(X=train_data, eval_set=test_data)
|
model.fit(X=train_data, eval_set=test_data)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def predict(
|
|
||||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
|
||||||
) -> Tuple[DataFrame, DataFrame]:
|
|
||||||
"""
|
|
||||||
Filter the prediction features data and predict with it.
|
|
||||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
|
||||||
:return:
|
|
||||||
:pred_df: dataframe containing the predictions
|
|
||||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
||||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
||||||
"""
|
|
||||||
|
|
||||||
dk.find_features(unfiltered_dataframe)
|
|
||||||
filtered_dataframe, _ = dk.filter_features(
|
|
||||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
|
||||||
)
|
|
||||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
|
||||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
|
||||||
|
|
||||||
# optional additional data cleaning/analysis
|
|
||||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
|
||||||
|
|
||||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
|
||||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
|
||||||
|
|
||||||
for label in dk.label_list:
|
|
||||||
pred_df[label] = (
|
|
||||||
(pred_df[label] + 1)
|
|
||||||
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
|
|
||||||
/ 2
|
|
||||||
) + dk.data["labels_min"][label]
|
|
||||||
|
|
||||||
return (pred_df, dk.do_predict)
|
|
||||||
|
@ -1,77 +1,22 @@
|
|||||||
import logging
|
import logging
|
||||||
from typing import Any, Dict, Tuple
|
from typing import Any, Dict
|
||||||
|
|
||||||
from catboost import CatBoostRegressor # , Pool
|
from catboost import CatBoostRegressor # , Pool
|
||||||
from pandas import DataFrame
|
|
||||||
from sklearn.multioutput import MultiOutputRegressor
|
from sklearn.multioutput import MultiOutputRegressor
|
||||||
|
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class CatboostPredictionMultiModel(IFreqaiModel):
|
class CatboostPredictionMultiModel(BaseRegressionModel):
|
||||||
"""
|
"""
|
||||||
User created prediction model. The class needs to override three necessary
|
User created prediction model. The class needs to override three necessary
|
||||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
|
|
||||||
"""
|
|
||||||
User uses this function to add any additional return values to the dataframe.
|
|
||||||
e.g.
|
|
||||||
dataframe['volatility'] = dk.volatility_values
|
|
||||||
"""
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def train(
|
|
||||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
|
||||||
) -> Tuple[DataFrame, DataFrame]:
|
|
||||||
"""
|
|
||||||
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
|
||||||
for storing, saving, loading, and analyzing the data.
|
|
||||||
:params:
|
|
||||||
:unfiltered_dataframe: Full dataframe for the current training period
|
|
||||||
:metadata: pair metadata from strategy.
|
|
||||||
:returns:
|
|
||||||
:model: Trained model which can be used to inference (self.predict)
|
|
||||||
"""
|
|
||||||
|
|
||||||
logger.info("--------------------Starting training " f"{pair} --------------------")
|
|
||||||
|
|
||||||
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
|
|
||||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
|
||||||
features_filtered, labels_filtered = dk.filter_features(
|
|
||||||
unfiltered_dataframe,
|
|
||||||
dk.training_features_list,
|
|
||||||
dk.label_list,
|
|
||||||
training_filter=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# split data into train/test data.
|
|
||||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
|
||||||
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
|
||||||
# normalize all data based on train_dataset only
|
|
||||||
data_dictionary = dk.normalize_data(data_dictionary)
|
|
||||||
|
|
||||||
# optional additional data cleaning/analysis
|
|
||||||
self.data_cleaning_train(dk)
|
|
||||||
|
|
||||||
logger.info(
|
|
||||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
|
||||||
)
|
|
||||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
|
||||||
|
|
||||||
model = self.fit(data_dictionary)
|
|
||||||
|
|
||||||
logger.info(f"--------------------done training {pair}--------------------")
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict) -> Any:
|
def fit(self, data_dictionary: Dict) -> Any:
|
||||||
"""
|
"""
|
||||||
User sets up the training and test data to fit their desired model here
|
User sets up the training and test data to fit their desired model here
|
||||||
@ -97,37 +42,3 @@ class CatboostPredictionMultiModel(IFreqaiModel):
|
|||||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def predict(
|
|
||||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
|
||||||
) -> Tuple[DataFrame, DataFrame]:
|
|
||||||
"""
|
|
||||||
Filter the prediction features data and predict with it.
|
|
||||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
|
||||||
:return:
|
|
||||||
:pred_df: dataframe containing the predictions
|
|
||||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
||||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
||||||
"""
|
|
||||||
|
|
||||||
dk.find_features(unfiltered_dataframe)
|
|
||||||
filtered_dataframe, _ = dk.filter_features(
|
|
||||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
|
||||||
)
|
|
||||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
|
||||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
|
||||||
|
|
||||||
# optional additional data cleaning/analysis
|
|
||||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
|
||||||
|
|
||||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
|
||||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
|
||||||
|
|
||||||
for label in dk.label_list:
|
|
||||||
pred_df[label] = (
|
|
||||||
(pred_df[label] + 1)
|
|
||||||
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
|
|
||||||
/ 2
|
|
||||||
) + dk.data["labels_min"][label]
|
|
||||||
|
|
||||||
return (pred_df, dk.do_predict)
|
|
||||||
|
@ -1,76 +1,21 @@
|
|||||||
import logging
|
import logging
|
||||||
from typing import Any, Dict, Tuple
|
from typing import Any, Dict
|
||||||
|
|
||||||
from lightgbm import LGBMRegressor
|
from lightgbm import LGBMRegressor
|
||||||
from pandas import DataFrame
|
|
||||||
|
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class LightGBMPredictionModel(IFreqaiModel):
|
class LightGBMPredictionModel(BaseRegressionModel):
|
||||||
"""
|
"""
|
||||||
User created prediction model. The class needs to override three necessary
|
User created prediction model. The class needs to override three necessary
|
||||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
|
|
||||||
"""
|
|
||||||
User uses this function to add any additional return values to the dataframe.
|
|
||||||
e.g.
|
|
||||||
dataframe['volatility'] = dk.volatility_values
|
|
||||||
"""
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def train(
|
|
||||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
|
||||||
) -> Tuple[DataFrame, DataFrame]:
|
|
||||||
"""
|
|
||||||
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
|
||||||
for storing, saving, loading, and analyzing the data.
|
|
||||||
:params:
|
|
||||||
:unfiltered_dataframe: Full dataframe for the current training period
|
|
||||||
:metadata: pair metadata from strategy.
|
|
||||||
:returns:
|
|
||||||
:model: Trained model which can be used to inference (self.predict)
|
|
||||||
"""
|
|
||||||
|
|
||||||
logger.info("--------------------Starting training " f"{pair} --------------------")
|
|
||||||
|
|
||||||
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
|
|
||||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
|
||||||
features_filtered, labels_filtered = dk.filter_features(
|
|
||||||
unfiltered_dataframe,
|
|
||||||
dk.training_features_list,
|
|
||||||
dk.label_list,
|
|
||||||
training_filter=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# split data into train/test data.
|
|
||||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
|
||||||
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
|
||||||
# normalize all data based on train_dataset only
|
|
||||||
data_dictionary = dk.normalize_data(data_dictionary)
|
|
||||||
|
|
||||||
# optional additional data cleaning/analysis
|
|
||||||
self.data_cleaning_train(dk)
|
|
||||||
|
|
||||||
logger.info(
|
|
||||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
|
||||||
)
|
|
||||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
|
||||||
|
|
||||||
model = self.fit(data_dictionary)
|
|
||||||
|
|
||||||
logger.info(f"--------------------done training {pair}--------------------")
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict) -> Any:
|
def fit(self, data_dictionary: Dict) -> Any:
|
||||||
"""
|
"""
|
||||||
Most regressors use the same function names and arguments e.g. user
|
Most regressors use the same function names and arguments e.g. user
|
||||||
@ -89,37 +34,3 @@ class LightGBMPredictionModel(IFreqaiModel):
|
|||||||
model.fit(X=X, y=y, eval_set=eval_set)
|
model.fit(X=X, y=y, eval_set=eval_set)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def predict(
|
|
||||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
|
||||||
) -> Tuple[DataFrame, DataFrame]:
|
|
||||||
"""
|
|
||||||
Filter the prediction features data and predict with it.
|
|
||||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
|
||||||
:return:
|
|
||||||
:pred_df: dataframe containing the predictions
|
|
||||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
||||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
||||||
"""
|
|
||||||
|
|
||||||
dk.find_features(unfiltered_dataframe)
|
|
||||||
filtered_dataframe, _ = dk.filter_features(
|
|
||||||
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
|
||||||
)
|
|
||||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
|
||||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
|
||||||
|
|
||||||
# optional additional data cleaning/analysis
|
|
||||||
self.data_cleaning_predict(dk, filtered_dataframe)
|
|
||||||
|
|
||||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
|
||||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
|
||||||
|
|
||||||
for label in dk.label_list:
|
|
||||||
pred_df[label] = (
|
|
||||||
(pred_df[label] + 1)
|
|
||||||
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
|
|
||||||
/ 2
|
|
||||||
) + dk.data["labels_min"][label]
|
|
||||||
|
|
||||||
return (pred_df, dk.do_predict)
|
|
||||||
|
Loading…
Reference in New Issue
Block a user