Create BaseRegression model - designed to reduce code duplication across currently available models.

This commit is contained in:
Matthias 2022-07-11 11:33:59 +02:00
parent 607455919e
commit 3fc92b1b21
4 changed files with 113 additions and 275 deletions

View File

@ -0,0 +1,104 @@
import logging
from typing import Tuple
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__)
class BaseRegressionModel(IFreqaiModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
"""
User uses this function to add any additional return values to the dataframe.
e.g.
dataframe['volatility'] = dk.volatility_values
"""
return dataframe
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:params:
:unfiltered_dataframe: Full dataframe for the current training period
:metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("--------------------Starting training " f"{pair} --------------------")
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f"--------------------done training {pair}--------------------")
return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk, filtered_dataframe)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
return (pred_df, dk.do_predict)

View File

@ -1,75 +1,21 @@
import logging import logging
from typing import Any, Dict, Tuple from typing import Any, Dict
from catboost import CatBoostRegressor, Pool from catboost import CatBoostRegressor, Pool
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class CatboostPredictionModel(IFreqaiModel): class CatboostPredictionModel(BaseRegressionModel):
""" """
User created prediction model. The class needs to override three necessary User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed. has its own DataHandler where data is held, saved, loaded, and managed.
""" """
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
"""
User uses this function to add any additional return values to the dataframe.
e.g.
dataframe['volatility'] = dk.volatility_values
"""
return dataframe
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:params:
:unfiltered_dataframe: Full dataframe for the current training period
:metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("--------------------Starting training " f"{pair} --------------------")
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f"--------------------done training {pair}--------------------")
return model
def fit(self, data_dictionary: Dict) -> Any: def fit(self, data_dictionary: Dict) -> Any:
""" """
User sets up the training and test data to fit their desired model here User sets up the training and test data to fit their desired model here
@ -99,37 +45,3 @@ class CatboostPredictionModel(IFreqaiModel):
model.fit(X=train_data, eval_set=test_data) model.fit(X=train_data, eval_set=test_data)
return model return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk, filtered_dataframe)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
return (pred_df, dk.do_predict)

View File

@ -1,77 +1,22 @@
import logging import logging
from typing import Any, Dict, Tuple from typing import Any, Dict
from catboost import CatBoostRegressor # , Pool from catboost import CatBoostRegressor # , Pool
from pandas import DataFrame
from sklearn.multioutput import MultiOutputRegressor from sklearn.multioutput import MultiOutputRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class CatboostPredictionMultiModel(IFreqaiModel): class CatboostPredictionMultiModel(BaseRegressionModel):
""" """
User created prediction model. The class needs to override three necessary User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed. has its own DataHandler where data is held, saved, loaded, and managed.
""" """
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
"""
User uses this function to add any additional return values to the dataframe.
e.g.
dataframe['volatility'] = dk.volatility_values
"""
return dataframe
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
for storing, saving, loading, and analyzing the data.
:params:
:unfiltered_dataframe: Full dataframe for the current training period
:metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("--------------------Starting training " f"{pair} --------------------")
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f"--------------------done training {pair}--------------------")
return model
def fit(self, data_dictionary: Dict) -> Any: def fit(self, data_dictionary: Dict) -> Any:
""" """
User sets up the training and test data to fit their desired model here User sets up the training and test data to fit their desired model here
@ -97,37 +42,3 @@ class CatboostPredictionMultiModel(IFreqaiModel):
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set) model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
return model return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk, filtered_dataframe)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
return (pred_df, dk.do_predict)

View File

@ -1,76 +1,21 @@
import logging import logging
from typing import Any, Dict, Tuple from typing import Any, Dict
from lightgbm import LGBMRegressor from lightgbm import LGBMRegressor
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class LightGBMPredictionModel(IFreqaiModel): class LightGBMPredictionModel(BaseRegressionModel):
""" """
User created prediction model. The class needs to override three necessary User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed. has its own DataHandler where data is held, saved, loaded, and managed.
""" """
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
"""
User uses this function to add any additional return values to the dataframe.
e.g.
dataframe['volatility'] = dk.volatility_values
"""
return dataframe
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
for storing, saving, loading, and analyzing the data.
:params:
:unfiltered_dataframe: Full dataframe for the current training period
:metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info("--------------------Starting training " f"{pair} --------------------")
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_dataframe,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f"--------------------done training {pair}--------------------")
return model
def fit(self, data_dictionary: Dict) -> Any: def fit(self, data_dictionary: Dict) -> Any:
""" """
Most regressors use the same function names and arguments e.g. user Most regressors use the same function names and arguments e.g. user
@ -89,37 +34,3 @@ class LightGBMPredictionModel(IFreqaiModel):
model.fit(X=X, y=y, eval_set=eval_set) model.fit(X=X, y=y, eval_set=eval_set)
return model return model
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_dataframe)
filtered_dataframe, _ = dk.filter_features(
unfiltered_dataframe, dk.training_features_list, training_filter=False
)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk, filtered_dataframe)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
pred_df = DataFrame(predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
return (pred_df, dk.do_predict)