reuse callback, allow user to acces all stable_baselines3 agents via config
This commit is contained in:
@@ -0,0 +1,84 @@
|
||||
import logging
|
||||
from typing import Any, Dict # , Tuple
|
||||
|
||||
# import numpy.typing as npt
|
||||
import torch as th
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import (BaseReinforcementLearningModel,
|
||||
make_env)
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
|
||||
"""
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
|
||||
|
||||
train_df = data_dictionary["train_features"]
|
||||
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
|
||||
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[512, 512, 512])
|
||||
|
||||
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=Path(dk.data_path / "tensorboard"),
|
||||
**self.freqai_info['model_training_parameters']
|
||||
)
|
||||
|
||||
model.learn(
|
||||
total_timesteps=int(total_timesteps),
|
||||
callback=self.eval_callback
|
||||
)
|
||||
|
||||
if Path(dk.data_path / "best_model.zip").is_file():
|
||||
logger.info('Callback found a best model.')
|
||||
best_model = self.MODELCLASS.load(dk.data_path / "best_model")
|
||||
return best_model
|
||||
|
||||
logger.info('Couldnt find best model, using final model instead.')
|
||||
|
||||
return model
|
||||
|
||||
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test, dk):
|
||||
"""
|
||||
If user has particular environment configuration needs, they can do that by
|
||||
overriding this function. In the present case, the user wants to setup training
|
||||
environments for multiple workers.
|
||||
"""
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
|
||||
|
||||
# environments
|
||||
if not self.train_env:
|
||||
env_id = "train_env"
|
||||
num_cpu = int(self.freqai_info["data_kitchen_thread_count"] / 2)
|
||||
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH) for i
|
||||
in range(num_cpu)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True) for i
|
||||
in range(num_cpu)])
|
||||
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=eval_freq,
|
||||
best_model_save_path=dk.data_path)
|
||||
else:
|
||||
self.train_env.env_method('reset')
|
||||
self.eval_env.env_method('reset')
|
||||
self.train_env.env_method('reset_env', train_df, prices_train,
|
||||
self.CONV_WIDTH, self.reward_params)
|
||||
self.eval_env.env_method('reset_env', train_df, prices_train,
|
||||
self.CONV_WIDTH, self.reward_params)
|
||||
self.eval_callback.__init__(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=eval_freq,
|
||||
best_model_save_path=dk.data_path)
|
||||
Reference in New Issue
Block a user