take dynamic sized tail off historic_predictions as return dataframe to strategy.
This commit is contained in:
parent
7d448fd4ac
commit
3e38c1b0bd
@ -241,12 +241,12 @@ class FreqaiDataDrawer:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
# dynamic df returned to strategy and plotted in frequi
|
# dynamic df returned to strategy and plotted in frequi
|
||||||
mrv_df = self.model_return_values[pair] = pd.DataFrame()
|
# mrv_df = self.model_return_values[pair] = pd.DataFrame()
|
||||||
|
|
||||||
# if user reused `identifier` in config and has historical predictions collected, load them
|
# if user reused `identifier` in config and has historical predictions collected, load them
|
||||||
# so that frequi remains uninterrupted after a crash
|
# so that frequi remains uninterrupted after a crash
|
||||||
hist_df = self.historic_predictions
|
hist_df = self.historic_predictions
|
||||||
if pair in hist_df:
|
# if pair in hist_df:
|
||||||
len_diff = len(hist_df[pair].index) - len(pred_df.index)
|
len_diff = len(hist_df[pair].index) - len(pred_df.index)
|
||||||
if len_diff < 0:
|
if len_diff < 0:
|
||||||
df_concat = pd.concat([pred_df.iloc[:abs(len_diff)], hist_df[pair]],
|
df_concat = pd.concat([pred_df.iloc[:abs(len_diff)], hist_df[pair]],
|
||||||
@ -257,32 +257,32 @@ class FreqaiDataDrawer:
|
|||||||
self.model_return_values[pair] = df_concat
|
self.model_return_values[pair] = df_concat
|
||||||
logger.info(f'Setting initial FreqUI plots from historical data for {pair}.')
|
logger.info(f'Setting initial FreqUI plots from historical data for {pair}.')
|
||||||
|
|
||||||
else:
|
# else:
|
||||||
for label in pred_df.columns:
|
# for label in pred_df.columns:
|
||||||
mrv_df[label] = pred_df[label]
|
# mrv_df[label] = pred_df[label]
|
||||||
if mrv_df[label].dtype == object:
|
# if mrv_df[label].dtype == object:
|
||||||
continue
|
# continue
|
||||||
mrv_df[f"{label}_mean"] = dk.data["labels_mean"][label]
|
# mrv_df[f"{label}_mean"] = dk.data["labels_mean"][label]
|
||||||
mrv_df[f"{label}_std"] = dk.data["labels_std"][label]
|
# mrv_df[f"{label}_std"] = dk.data["labels_std"][label]
|
||||||
|
|
||||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
|
# if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||||
mrv_df["DI_values"] = dk.DI_values
|
# mrv_df["DI_values"] = dk.DI_values
|
||||||
|
|
||||||
mrv_df["do_predict"] = do_preds
|
# mrv_df["do_predict"] = do_preds
|
||||||
|
|
||||||
if dk.data['extra_returns_per_train']:
|
# if dk.data['extra_returns_per_train']:
|
||||||
rets = dk.data['extra_returns_per_train']
|
# rets = dk.data['extra_returns_per_train']
|
||||||
for return_str in rets:
|
# for return_str in rets:
|
||||||
mrv_df[return_str] = rets[return_str]
|
# mrv_df[return_str] = rets[return_str]
|
||||||
|
|
||||||
# for keras type models, the conv_window needs to be prepended so
|
# # for keras type models, the conv_window needs to be prepended so
|
||||||
# viewing is correct in frequi
|
# # viewing is correct in frequi
|
||||||
if self.freqai_info.get('keras', False):
|
# if self.freqai_info.get('keras', False):
|
||||||
n_lost_points = self.freqai_info.get('conv_width', 2)
|
# n_lost_points = self.freqai_info.get('conv_width', 2)
|
||||||
zeros_df = DataFrame(np.zeros((n_lost_points, len(mrv_df.columns))),
|
# zeros_df = DataFrame(np.zeros((n_lost_points, len(mrv_df.columns))),
|
||||||
columns=mrv_df.columns)
|
# columns=mrv_df.columns)
|
||||||
self.model_return_values[pair] = pd.concat(
|
# self.model_return_values[pair] = pd.concat(
|
||||||
[zeros_df, mrv_df], axis=0, ignore_index=True)
|
# [zeros_df, mrv_df], axis=0, ignore_index=True)
|
||||||
|
|
||||||
def append_model_predictions(self, pair: str, predictions: DataFrame,
|
def append_model_predictions(self, pair: str, predictions: DataFrame,
|
||||||
do_preds: NDArray[np.int_],
|
do_preds: NDArray[np.int_],
|
||||||
@ -292,23 +292,23 @@ class FreqaiDataDrawer:
|
|||||||
# own return array in the same shape, we need to figure out how the size has changed
|
# own return array in the same shape, we need to figure out how the size has changed
|
||||||
# and adapt our stored/returned info accordingly.
|
# and adapt our stored/returned info accordingly.
|
||||||
|
|
||||||
length_difference = len(self.model_return_values[pair]) - len_df
|
# length_difference = len(self.model_return_values[pair]) - len_df
|
||||||
i = 0
|
# i = 0
|
||||||
|
|
||||||
if length_difference == 0:
|
# if length_difference == 0:
|
||||||
i = 1
|
# i = 1
|
||||||
elif length_difference > 0:
|
# elif length_difference > 0:
|
||||||
i = length_difference + 1
|
# i = length_difference + 1
|
||||||
|
|
||||||
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-i)
|
# df = self.model_return_values[pair] = self.model_return_values[pair].shift(-i)
|
||||||
|
|
||||||
if pair in self.historic_predictions:
|
# if pair in self.historic_predictions:
|
||||||
hp_df = self.historic_predictions[pair]
|
df = self.historic_predictions[pair]
|
||||||
# here are some pandas hula hoops to accommodate the possibility of a series
|
# here are some pandas hula hoops to accommodate the possibility of a series
|
||||||
# or dataframe depending number of labels requested by user
|
# or dataframe depending number of labels requested by user
|
||||||
nan_df = pd.DataFrame(np.nan, index=hp_df.index[-2:] + 2, columns=hp_df.columns)
|
nan_df = pd.DataFrame(np.nan, index=df.index[-2:] + 2, columns=df.columns)
|
||||||
hp_df = pd.concat([hp_df, nan_df], ignore_index=True, axis=0)
|
df = pd.concat([df, nan_df], ignore_index=True, axis=0)
|
||||||
self.historic_predictions[pair] = hp_df[:-1]
|
df = self.historic_predictions[pair] = df[:-1]
|
||||||
|
|
||||||
# incase user adds additional "predictions" e.g. predict_proba output:
|
# incase user adds additional "predictions" e.g. predict_proba output:
|
||||||
for label in predictions.columns:
|
for label in predictions.columns:
|
||||||
@ -328,16 +328,18 @@ class FreqaiDataDrawer:
|
|||||||
for return_str in rets:
|
for return_str in rets:
|
||||||
df[return_str].iloc[-1] = rets[return_str]
|
df[return_str].iloc[-1] = rets[return_str]
|
||||||
|
|
||||||
# append the new predictions to persistent storage
|
self.model_return_values[pair] = df.tail(len_df).reset_index(drop=True)
|
||||||
if pair in self.historic_predictions:
|
|
||||||
for key in df.keys():
|
|
||||||
self.historic_predictions[pair][key].iloc[-1] = df[key].iloc[-1]
|
|
||||||
|
|
||||||
if length_difference < 0:
|
# # append the new predictions to persistent storage
|
||||||
prepend_df = pd.DataFrame(
|
# if pair in self.historic_predictions:
|
||||||
np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
|
# for key in df.keys():
|
||||||
)
|
# self.historic_predictions[pair][key].iloc[-1] = df[key].iloc[-1]
|
||||||
df = pd.concat([prepend_df, df], axis=0)
|
|
||||||
|
# if length_difference < 0:
|
||||||
|
# prepend_df = pd.DataFrame(
|
||||||
|
# np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
|
||||||
|
# )
|
||||||
|
# df = pd.concat([prepend_df, df], axis=0)
|
||||||
|
|
||||||
def attach_return_values_to_return_dataframe(
|
def attach_return_values_to_return_dataframe(
|
||||||
self, pair: str, dataframe: DataFrame) -> DataFrame:
|
self, pair: str, dataframe: DataFrame) -> DataFrame:
|
||||||
|
@ -319,9 +319,10 @@ class IFreqaiModel(ABC):
|
|||||||
# first predictions are made on entire historical candle set coming from strategy. This
|
# first predictions are made on entire historical candle set coming from strategy. This
|
||||||
# allows FreqUI to show full return values.
|
# allows FreqUI to show full return values.
|
||||||
pred_df, do_preds = self.predict(dataframe, dk)
|
pred_df, do_preds = self.predict(dataframe, dk)
|
||||||
self.dd.set_initial_return_values(pair, dk, pred_df, do_preds)
|
|
||||||
if pair not in self.dd.historic_predictions:
|
if pair not in self.dd.historic_predictions:
|
||||||
self.set_initial_historic_predictions(pred_df, dk, pair)
|
self.set_initial_historic_predictions(pred_df, dk, pair)
|
||||||
|
self.dd.set_initial_return_values(pair, dk, pred_df, do_preds)
|
||||||
|
|
||||||
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
|
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
|
||||||
return
|
return
|
||||||
elif self.dk.check_if_model_expired(trained_timestamp):
|
elif self.dk.check_if_model_expired(trained_timestamp):
|
||||||
@ -551,6 +552,15 @@ class IFreqaiModel(ABC):
|
|||||||
for return_str in dk.data['extra_returns_per_train']:
|
for return_str in dk.data['extra_returns_per_train']:
|
||||||
hist_preds_df[return_str] = 0
|
hist_preds_df[return_str] = 0
|
||||||
|
|
||||||
|
# # for keras type models, the conv_window needs to be prepended so
|
||||||
|
# # viewing is correct in frequi
|
||||||
|
if self.freqai_info.get('keras', False):
|
||||||
|
n_lost_points = self.freqai_info.get('conv_width', 2)
|
||||||
|
zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))),
|
||||||
|
columns=hist_preds_df.columns)
|
||||||
|
self.model_return_values[pair] = pd.concat(
|
||||||
|
[zeros_df, hist_preds_df], axis=0, ignore_index=True)
|
||||||
|
|
||||||
def fit_live_predictions(self, dk: FreqaiDataKitchen, pair: str) -> None:
|
def fit_live_predictions(self, dk: FreqaiDataKitchen, pair: str) -> None:
|
||||||
"""
|
"""
|
||||||
Fit the labels with a gaussian distribution
|
Fit the labels with a gaussian distribution
|
||||||
|
Loading…
Reference in New Issue
Block a user