add option to force single precision
This commit is contained in:
parent
c2130ed3dd
commit
3ccc120f92
@ -1246,6 +1246,9 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
self.get_unique_classes_from_labels(dataframe)
|
self.get_unique_classes_from_labels(dataframe)
|
||||||
|
|
||||||
|
if self.freqai_config.get('convert_df_to_float32', False):
|
||||||
|
dataframe = self.reduce_dataframe_footprint(dataframe)
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def fit_labels(self) -> None:
|
def fit_labels(self) -> None:
|
||||||
@ -1344,3 +1347,35 @@ class FreqaiDataKitchen:
|
|||||||
f"Could not find backtesting prediction file at {path_to_predictionfile}"
|
f"Could not find backtesting prediction file at {path_to_predictionfile}"
|
||||||
)
|
)
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def reduce_dataframe_footprint(self, df: DataFrame) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Ensure all values are float32
|
||||||
|
"""
|
||||||
|
start_mem = df.memory_usage().sum() / 1024**2
|
||||||
|
print("Memory usage of dataframe is {:.2f} MB".format(start_mem))
|
||||||
|
|
||||||
|
for col in df.columns[1:]:
|
||||||
|
col_type = df[col].dtype
|
||||||
|
|
||||||
|
if col_type != object:
|
||||||
|
c_min = df[col].min()
|
||||||
|
c_max = df[col].max()
|
||||||
|
if str(col_type)[:3] == "int":
|
||||||
|
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
|
||||||
|
df[col] = df[col].astype(np.int8)
|
||||||
|
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
|
||||||
|
df[col] = df[col].astype(np.int16)
|
||||||
|
elif c_min > np.iinfo(np.int32).min:
|
||||||
|
df[col] = df[col].astype(np.int32)
|
||||||
|
else:
|
||||||
|
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
|
||||||
|
df[col] = df[col].astype(np.float16)
|
||||||
|
elif c_min > np.finfo(np.float32).min:
|
||||||
|
df[col] = df[col].astype(np.float32)
|
||||||
|
|
||||||
|
end_mem = df.memory_usage().sum() / 1024**2
|
||||||
|
print("Memory usage after optimization is: {:.2f} MB".format(end_mem))
|
||||||
|
print("Decreased by {:.1f}%".format(100 * (start_mem - end_mem) / start_mem))
|
||||||
|
|
||||||
|
return df
|
||||||
|
Loading…
Reference in New Issue
Block a user