flake8 fix
This commit is contained in:
parent
404df7ae20
commit
3b9052247f
@ -121,16 +121,17 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
|
|||||||
logger.debug(message)
|
logger.debug(message)
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
|
||||||
def reduce_mem_usage(pair: str, df: DataFrame) -> DataFrame:
|
def reduce_mem_usage(pair: str, df: DataFrame) -> DataFrame:
|
||||||
""" iterate through all the columns of a dataframe and modify the data type
|
""" iterate through all the columns of a dataframe and modify the data type
|
||||||
to reduce memory usage.
|
to reduce memory usage.
|
||||||
"""
|
"""
|
||||||
# start_mem = df.memory_usage().sum() / 1024**2
|
# start_mem = df.memory_usage().sum() / 1024**2
|
||||||
# logger.info(f"Memory usage of dataframe for {pair} is {start_mem:.2f} MB")
|
# logger.info(f"Memory usage of dataframe for {pair} is {start_mem:.2f} MB")
|
||||||
|
|
||||||
for col in df.columns[1:]:
|
for col in df.columns[1:]:
|
||||||
col_type = df[col].dtype
|
col_type = df[col].dtype
|
||||||
|
|
||||||
if col_type != object:
|
if col_type != object:
|
||||||
c_min = df[col].min()
|
c_min = df[col].min()
|
||||||
c_max = df[col].max()
|
c_max = df[col].max()
|
||||||
@ -142,7 +143,7 @@ def reduce_mem_usage(pair: str, df: DataFrame) -> DataFrame:
|
|||||||
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
|
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
|
||||||
df[col] = df[col].astype(np.int32)
|
df[col] = df[col].astype(np.int32)
|
||||||
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
|
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
|
||||||
df[col] = df[col].astype(np.int64)
|
df[col] = df[col].astype(np.int64)
|
||||||
elif str(col_type)[:5] == "float":
|
elif str(col_type)[:5] == "float":
|
||||||
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
|
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
|
||||||
df[col] = df[col].astype(np.float16)
|
df[col] = df[col].astype(np.float16)
|
||||||
@ -158,9 +159,10 @@ def reduce_mem_usage(pair: str, df: DataFrame) -> DataFrame:
|
|||||||
# end_mem = df.memory_usage().sum() / 1024**2
|
# end_mem = df.memory_usage().sum() / 1024**2
|
||||||
# logger.info("Memory usage after optimization is: {:.2f} MB".format(end_mem))
|
# logger.info("Memory usage after optimization is: {:.2f} MB".format(end_mem))
|
||||||
# logger.info("Decreased by {:.1f}%".format(100 * (start_mem - end_mem) / start_mem))
|
# logger.info("Decreased by {:.1f}%".format(100 * (start_mem - end_mem) / start_mem))
|
||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
|
||||||
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date',
|
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date',
|
||||||
startup_candles: int = 0) -> DataFrame:
|
startup_candles: int = 0) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
@ -196,10 +198,10 @@ def trim_dataframes(preprocessed: Dict[str, DataFrame], timerange,
|
|||||||
trimed_df = trim_dataframe(df, timerange, startup_candles=startup_candles)
|
trimed_df = trim_dataframe(df, timerange, startup_candles=startup_candles)
|
||||||
if not trimed_df.empty:
|
if not trimed_df.empty:
|
||||||
# start_mem = trimed_df.memory_usage().sum() / 1024**2
|
# start_mem = trimed_df.memory_usage().sum() / 1024**2
|
||||||
# logger.info(f"Memory usage of dataframe for {pair} before reduced is {start_mem:.2f} MB")
|
# logger.info(f"Memory usage of df for {pair} before reduced is {start_mem:.2f} MB")
|
||||||
trimed_df = reduce_mem_usage(pair, trimed_df)
|
trimed_df = reduce_mem_usage(pair, trimed_df)
|
||||||
# end_mem = trimed_df.memory_usage().sum() / 1024**2
|
# end_mem = trimed_df.memory_usage().sum() / 1024**2
|
||||||
# logger.info(f"Memory usage of dataframe for {pair} after reduced is {end_mem:.2f} MB")
|
# logger.info(f"Memory usage of df for {pair} after reduced is {end_mem:.2f} MB")
|
||||||
processed[pair] = trimed_df
|
processed[pair] = trimed_df
|
||||||
else:
|
else:
|
||||||
logger.warning(f'{pair} has no data left after adjusting for startup candles, '
|
logger.warning(f'{pair} has no data left after adjusting for startup candles, '
|
||||||
|
Loading…
Reference in New Issue
Block a user