Merge pull request #1089 from freqtrade/feat/backtest_multi_strat

Allow multi strategy backtest without data reload
This commit is contained in:
Janne Sinivirta 2018-08-02 12:35:47 +03:00 committed by GitHub
commit 3a5b435dfa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 349 additions and 74 deletions

View File

@ -151,7 +151,7 @@ cp freqtrade/tests/testdata/pairs.json user_data/data/binance
Then run: Then run:
```bash ```bash
python scripts/download_backtest_data --exchange binance python scripts/download_backtest_data.py --exchange binance
``` ```
This will download ticker data for all the currency pairs you defined in `pairs.json`. This will download ticker data for all the currency pairs you defined in `pairs.json`.
@ -238,6 +238,31 @@ On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
profit. Hence, keep in mind that your performance is a mix of your profit. Hence, keep in mind that your performance is a mix of your
strategies, your configuration, and the crypto-currency you have set up. strategies, your configuration, and the crypto-currency you have set up.
## Backtesting multiple strategies
To backtest multiple strategies, a list of Strategies can be provided.
This is limited to 1 ticker-interval per run, however, data is only loaded once from disk so if you have multiple
strategies you'd like to compare, this should give a nice runtime boost.
All listed Strategies need to be in the same folder.
``` bash
freqtrade backtesting --timerange 20180401-20180410 --ticker-interval 5m --strategy-list Strategy001 Strategy002 --export trades
```
This will save the results to `user_data/backtest_data/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
There will be an additional table comparing win/losses of the different strategies (identical to the "Total" row in the first table).
Detailed output for all strategies one after the other will be available, so make sure to scroll up.
```
=================================================== Strategy Summary ====================================================
| Strategy | buy count | avg profit % | cum profit % | total profit ETH | avg duration | profit | loss |
|:-----------|------------:|---------------:|---------------:|-------------------:|:----------------|---------:|-------:|
| Strategy1 | 19 | -0.76 | -14.39 | -0.01440287 | 15:48:00 | 15 | 4 |
| Strategy2 | 6 | -2.73 | -16.40 | -0.01641299 | 1 day, 14:12:00 | 3 | 3 |
```
## Next step ## Next step
Great, your strategy is profitable. What if the bot can give your the Great, your strategy is profitable. What if the bot can give your the

View File

@ -1,13 +1,15 @@
# Bot usage # Bot usage
This page explains the difference parameters of the bot and how to run
it. This page explains the difference parameters of the bot and how to run it.
## Table of Contents ## Table of Contents
- [Bot commands](#bot-commands) - [Bot commands](#bot-commands)
- [Backtesting commands](#backtesting-commands) - [Backtesting commands](#backtesting-commands)
- [Hyperopt commands](#hyperopt-commands) - [Hyperopt commands](#hyperopt-commands)
## Bot commands ## Bot commands
``` ```
usage: freqtrade [-h] [-v] [--version] [-c PATH] [-d PATH] [-s NAME] usage: freqtrade [-h] [-v] [--version] [-c PATH] [-d PATH] [-s NAME]
[--strategy-path PATH] [--dynamic-whitelist [INT]] [--strategy-path PATH] [--dynamic-whitelist [INT]]
@ -41,6 +43,7 @@ optional arguments:
``` ```
### How to use a different config file? ### How to use a different config file?
The bot allows you to select which config file you want to use. Per The bot allows you to select which config file you want to use. Per
default, the bot will load the file `./config.json` default, the bot will load the file `./config.json`
@ -49,6 +52,7 @@ python3 ./freqtrade/main.py -c path/far/far/away/config.json
``` ```
### How to use --strategy? ### How to use --strategy?
This parameter will allow you to load your custom strategy class. This parameter will allow you to load your custom strategy class.
Per default without `--strategy` or `-s` the bot will load the Per default without `--strategy` or `-s` the bot will load the
`DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`). `DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`).
@ -60,6 +64,7 @@ To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this
**Example:** **Example:**
In `user_data/strategies` you have a file `my_awesome_strategy.py` which has In `user_data/strategies` you have a file `my_awesome_strategy.py` which has
a strategy class called `AwesomeStrategy` to load it: a strategy class called `AwesomeStrategy` to load it:
```bash ```bash
python3 ./freqtrade/main.py --strategy AwesomeStrategy python3 ./freqtrade/main.py --strategy AwesomeStrategy
``` ```
@ -70,6 +75,7 @@ message the reason (File not found, or errors in your code).
Learn more about strategy file in [optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md). Learn more about strategy file in [optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).
### How to use --strategy-path? ### How to use --strategy-path?
This parameter allows you to add an additional strategy lookup path, which gets This parameter allows you to add an additional strategy lookup path, which gets
checked before the default locations (The passed path must be a folder!): checked before the default locations (The passed path must be a folder!):
```bash ```bash
@ -77,21 +83,25 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/fol
``` ```
#### How to install a strategy? #### How to install a strategy?
This is very simple. Copy paste your strategy file into the folder This is very simple. Copy paste your strategy file into the folder
`user_data/strategies` or use `--strategy-path`. And voila, the bot is ready to use it. `user_data/strategies` or use `--strategy-path`. And voila, the bot is ready to use it.
### How to use --dynamic-whitelist? ### How to use --dynamic-whitelist?
Per default `--dynamic-whitelist` will retrieve the 20 currencies based Per default `--dynamic-whitelist` will retrieve the 20 currencies based
on BaseVolume. This value can be changed when you run the script. on BaseVolume. This value can be changed when you run the script.
**By Default** **By Default**
Get the 20 currencies based on BaseVolume. Get the 20 currencies based on BaseVolume.
```bash ```bash
python3 ./freqtrade/main.py --dynamic-whitelist python3 ./freqtrade/main.py --dynamic-whitelist
``` ```
**Customize the number of currencies to retrieve** **Customize the number of currencies to retrieve**
Get the 30 currencies based on BaseVolume. Get the 30 currencies based on BaseVolume.
```bash ```bash
python3 ./freqtrade/main.py --dynamic-whitelist 30 python3 ./freqtrade/main.py --dynamic-whitelist 30
``` ```
@ -102,6 +112,7 @@ negative value (e.g -2), `--dynamic-whitelist` will use the default
value (20). value (20).
### How to use --db-url? ### How to use --db-url?
When you run the bot in Dry-run mode, per default no transactions are When you run the bot in Dry-run mode, per default no transactions are
stored in a database. If you want to store your bot actions in a DB stored in a database. If you want to store your bot actions in a DB
using `--db-url`. This can also be used to specify a custom database using `--db-url`. This can also be used to specify a custom database
@ -111,14 +122,14 @@ in production mode. Example command:
python3 ./freqtrade/main.py -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite python3 ./freqtrade/main.py -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite
``` ```
## Backtesting commands ## Backtesting commands
Backtesting also uses the config specified via `-c/--config`. Backtesting also uses the config specified via `-c/--config`.
``` ```
usage: main.py backtesting [-h] [-i TICKER_INTERVAL] [--eps] [--dmmp] usage: freqtrade backtesting [-h] [-i TICKER_INTERVAL] [--eps] [--dmmp]
[--timerange TIMERANGE] [-l] [-r] [--timerange TIMERANGE] [-l] [-r]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export EXPORT] [--export-filename PATH] [--export EXPORT] [--export-filename PATH]
optional arguments: optional arguments:
@ -139,6 +150,13 @@ optional arguments:
refresh the pairs files in tests/testdata with the refresh the pairs files in tests/testdata with the
latest data from the exchange. Use it if you want to latest data from the exchange. Use it if you want to
run your backtesting with up-to-date data. run your backtesting with up-to-date data.
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
Provide a commaseparated list of strategies to
backtest Please note that ticker-interval needs to be
set either in config or via command line. When using
this together with --export trades, the strategy-name
is injected into the filename (so backtest-data.json
becomes backtest-data-DefaultStrategy.json
--export EXPORT export backtest results, argument are: trades Example --export EXPORT export backtest results, argument are: trades Example
--export=trades --export=trades
--export-filename PATH --export-filename PATH
@ -151,6 +169,7 @@ optional arguments:
``` ```
### How to use --refresh-pairs-cached parameter? ### How to use --refresh-pairs-cached parameter?
The first time your run Backtesting, it will take the pairs you have The first time your run Backtesting, it will take the pairs you have
set in your config file and download data from Bittrex. set in your config file and download data from Bittrex.
@ -162,7 +181,6 @@ to come back to the previous version.**
To test your strategy with latest data, we recommend continuing using To test your strategy with latest data, we recommend continuing using
the parameter `-l` or `--live`. the parameter `-l` or `--live`.
## Hyperopt commands ## Hyperopt commands
To optimize your strategy, you can use hyperopt parameter hyperoptimization To optimize your strategy, you can use hyperopt parameter hyperoptimization
@ -194,10 +212,11 @@ optional arguments:
``` ```
## A parameter missing in the configuration? ## A parameter missing in the configuration?
All parameters for `main.py`, `backtesting`, `hyperopt` are referenced All parameters for `main.py`, `backtesting`, `hyperopt` are referenced
in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L84) in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L84)
## Next step ## Next step
The optimal strategy of the bot will change with time depending of the
market trends. The next step is to The optimal strategy of the bot will change with time depending of the market trends. The next step is to
[optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md). [optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).

View File

@ -142,6 +142,16 @@ class Arguments(object):
action='store_true', action='store_true',
dest='refresh_pairs', dest='refresh_pairs',
) )
parser.add_argument(
'--strategy-list',
help='Provide a commaseparated list of strategies to backtest '
'Please note that ticker-interval needs to be set either in config '
'or via command line. When using this together with --export trades, '
'the strategy-name is injected into the filename '
'(so backtest-data.json becomes backtest-data-DefaultStrategy.json',
nargs='+',
dest='strategy_list',
)
parser.add_argument( parser.add_argument(
'--export', '--export',
help='export backtest results, argument are: trades\ help='export backtest results, argument are: trades\

View File

@ -187,6 +187,14 @@ class Configuration(object):
config.update({'refresh_pairs': True}) config.update({'refresh_pairs': True})
logger.info('Parameter -r/--refresh-pairs-cached detected ...') logger.info('Parameter -r/--refresh-pairs-cached detected ...')
if 'strategy_list' in self.args and self.args.strategy_list:
config.update({'strategy_list': self.args.strategy_list})
logger.info('Using strategy list of %s Strategies', len(self.args.strategy_list))
if 'ticker_interval' in self.args and self.args.ticker_interval:
config.update({'ticker_interval': self.args.ticker_interval})
logger.info('Overriding ticker interval with Command line argument')
# If --export is used we add it to the configuration # If --export is used we add it to the configuration
if 'export' in self.args and self.args.export: if 'export' in self.args and self.args.export:
config.update({'export': self.args.export}) config.update({'export': self.args.export})

View File

@ -6,7 +6,9 @@ This module contains the backtesting logic
import logging import logging
import operator import operator
from argparse import Namespace from argparse import Namespace
from copy import deepcopy
from datetime import datetime, timedelta from datetime import datetime, timedelta
from pathlib import Path
from typing import Any, Dict, List, NamedTuple, Optional, Tuple from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import arrow import arrow
@ -52,13 +54,9 @@ class Backtesting(object):
backtesting = Backtesting(config) backtesting = Backtesting(config)
backtesting.start() backtesting.start()
""" """
def __init__(self, config: Dict[str, Any]) -> None: def __init__(self, config: Dict[str, Any]) -> None:
self.config = config self.config = config
self.strategy: IStrategy = StrategyResolver(self.config).strategy
self.ticker_interval = self.strategy.ticker_interval
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
self.advise_buy = self.strategy.advise_buy
self.advise_sell = self.strategy.advise_sell
# Reset keys for backtesting # Reset keys for backtesting
self.config['exchange']['key'] = '' self.config['exchange']['key'] = ''
@ -66,9 +64,36 @@ class Backtesting(object):
self.config['exchange']['password'] = '' self.config['exchange']['password'] = ''
self.config['exchange']['uid'] = '' self.config['exchange']['uid'] = ''
self.config['dry_run'] = True self.config['dry_run'] = True
self.strategylist: List[IStrategy] = []
if self.config.get('strategy_list', None):
# Force one interval
self.ticker_interval = str(self.config.get('ticker_interval'))
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
self.strategylist.append(StrategyResolver(stratconf).strategy)
else:
# only one strategy
strat = StrategyResolver(self.config).strategy
self.strategylist.append(StrategyResolver(self.config).strategy)
# Load one strategy
self._set_strategy(self.strategylist[0])
self.exchange = Exchange(self.config) self.exchange = Exchange(self.config)
self.fee = self.exchange.get_fee() self.fee = self.exchange.get_fee()
def _set_strategy(self, strategy):
"""
Load strategy into backtesting
"""
self.strategy = strategy
self.ticker_interval = self.config.get('ticker_interval')
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
self.advise_buy = strategy.advise_buy
self.advise_sell = strategy.advise_sell
@staticmethod @staticmethod
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]: def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
""" """
@ -132,7 +157,32 @@ class Backtesting(object):
tabular_data.append([reason.value, count]) tabular_data.append([reason.value, count])
return tabulate(tabular_data, headers=headers, tablefmt="pipe") return tabulate(tabular_data, headers=headers, tablefmt="pipe")
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None: def _generate_text_table_strategy(self, all_results: dict) -> str:
"""
Generate summary table per strategy
"""
stake_currency = str(self.config.get('stake_currency'))
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
strategyname: Optional[str] = None) -> None:
records = [(t.pair, t.profit_percent, t.open_time.timestamp(), records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration, t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
@ -140,6 +190,11 @@ class Backtesting(object):
for index, t in results.iterrows()] for index, t in results.iterrows()]
if records: if records:
if strategyname:
# Inject strategyname to filename
recname = Path(recordfilename)
recordfilename = str(Path.joinpath(
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
logger.info('Dumping backtest results to %s', recordfilename) logger.info('Dumping backtest results to %s', recordfilename)
file_dump_json(recordfilename, records) file_dump_json(recordfilename, records)
@ -307,62 +362,55 @@ class Backtesting(object):
else: else:
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...') logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
max_open_trades = 0 max_open_trades = 0
all_results = {}
preprocessed = self.tickerdata_to_dataframe(data) for strat in self.strategylist:
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
self._set_strategy(strat)
# Print timeframe # need to reprocess data every time to populate signals
min_date, max_date = self.get_timeframe(preprocessed) preprocessed = self.tickerdata_to_dataframe(data)
logger.info(
'Measuring data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
# Execute backtest and print results # Print timeframe
results = self.backtest( min_date, max_date = self.get_timeframe(preprocessed)
{ logger.info(
'stake_amount': self.config.get('stake_amount'), 'Measuring data from %s up to %s (%s days)..',
'processed': preprocessed, min_date.isoformat(),
'max_open_trades': max_open_trades, max_date.isoformat(),
'position_stacking': self.config.get('position_stacking', False), (max_date - min_date).days
}
)
if self.config.get('export', False):
self._store_backtest_result(self.config.get('exportfilename'), results)
logger.info(
'\n' + '=' * 49 +
' BACKTESTING REPORT ' +
'=' * 50 + '\n'
'%s',
self._generate_text_table(
data,
results
) )
)
# logger.info(
# results[['sell_reason']].groupby('sell_reason').count()
# )
logger.info( # Execute backtest and print results
'\n' + all_results[self.strategy.get_strategy_name()] = self.backtest(
' SELL READON STATS '.center(119, '=') + {
'\n%s \n', 'stake_amount': self.config.get('stake_amount'),
self._generate_text_table_sell_reason(data, results) 'processed': preprocessed,
'max_open_trades': max_open_trades,
) 'position_stacking': self.config.get('position_stacking', False),
}
logger.info(
'\n' +
' LEFT OPEN TRADES REPORT '.center(119, '=') +
'\n%s',
self._generate_text_table(
data,
results.loc[results.open_at_end]
) )
)
for strategy, results in all_results.items():
if self.config.get('export', False):
self._store_backtest_result(self.config['exportfilename'], results,
strategy if len(self.strategylist) > 1 else None)
print(f"Result for strategy {strategy}")
print(' BACKTESTING REPORT '.center(119, '='))
print(self._generate_text_table(data, results))
print(' SELL REASON STATS '.center(119, '='))
print(self._generate_text_table_sell_reason(data, results))
print(' LEFT OPEN TRADES REPORT '.center(119, '='))
print(self._generate_text_table(data, results.loc[results.open_at_end]))
print()
if len(all_results) > 1:
# Print Strategy summary table
print(' Strategy Summary '.center(119, '='))
print(self._generate_text_table_strategy(all_results))
print('\nFor more details, please look at the detail tables above')
def setup_configuration(args: Namespace) -> Dict[str, Any]: def setup_configuration(args: Namespace) -> Dict[str, Any]:

View File

@ -406,6 +406,50 @@ def test_generate_text_table_sell_reason(default_conf, mocker):
data={'ETH/BTC': {}}, results=results) == result_str data={'ETH/BTC': {}}, results=results) == result_str
def test_generate_text_table_strategyn(default_conf, mocker):
"""
Test Backtesting.generate_text_table_sell_reason() method
"""
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
results = {}
results['ETH/BTC'] = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'profit': [2, 0, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
results['LTC/BTC'] = pd.DataFrame(
{
'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'],
'profit_percent': [0.4, 0.2, 0.3],
'profit_abs': [0.4, 0.4, 0.5],
'trade_duration': [15, 30, 15],
'profit': [4, 1, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
result_str = (
'| Strategy | buy count | avg profit % | cum profit % '
'| total profit BTC | avg duration | profit | loss |\n'
'|:-----------|------------:|---------------:|---------------:'
'|-------------------:|:---------------|---------:|-------:|\n'
'| ETH/BTC | 3 | 20.00 | 60.00 '
'| 1.10000000 | 0:17:00 | 3 | 0 |\n'
'| LTC/BTC | 3 | 30.00 | 90.00 '
'| 1.30000000 | 0:20:00 | 3 | 0 |'
)
print(backtesting._generate_text_table_strategy(all_results=results))
assert backtesting._generate_text_table_strategy(all_results=results) == result_str
def test_backtesting_start(default_conf, mocker, caplog) -> None: def test_backtesting_start(default_conf, mocker, caplog) -> None:
def get_timeframe(input1, input2): def get_timeframe(input1, input2):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59) return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
@ -654,6 +698,18 @@ def test_backtest_record(default_conf, fee, mocker):
records = records[0] records = records[0]
# Ensure records are of correct type # Ensure records are of correct type
assert len(records) == 4 assert len(records) == 4
# reset test to test with strategy name
names = []
records = []
backtesting._store_backtest_result("backtest-result.json", results, "DefStrat")
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result-DefStrat.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117) # ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records # Below follows just a typecheck of the schema/type of trade-records
oix = None oix = None
@ -686,15 +742,6 @@ def test_backtest_start_live(default_conf, mocker, caplog):
read_data=json.dumps(default_conf) read_data=json.dumps(default_conf)
)) ))
args = MagicMock()
args.ticker_interval = 1
args.level = 10
args.live = True
args.datadir = None
args.export = None
args.strategy = 'DefaultStrategy'
args.timerange = '-100' # needed due to MagicMock malleability
args = [ args = [
'--config', 'config.json', '--config', 'config.json',
'--strategy', 'DefaultStrategy', '--strategy', 'DefaultStrategy',
@ -725,3 +772,60 @@ def test_backtest_start_live(default_conf, mocker, caplog):
for line in exists: for line in exists:
assert log_has(line, caplog.record_tuples) assert log_has(line, caplog.record_tuples)
def test_backtest_start_multi_strat(default_conf, mocker, caplog):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history',
new=lambda s, n, i: _load_pair_as_ticks(n, i))
patch_exchange(mocker)
backtestmock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
gen_table_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', gen_table_mock)
gen_strattable_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table_strategy',
gen_strattable_mock)
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--timerange', '-100',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategy',
]
args = get_args(args)
start(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert gen_table_mock.call_count == 4
assert gen_strattable_mock.call_count == 1
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategy',
]
for line in exists:
assert log_has(line, caplog.record_tuples)

View File

@ -132,7 +132,11 @@ def test_parse_args_backtesting_custom() -> None:
'backtesting', 'backtesting',
'--live', '--live',
'--ticker-interval', '1m', '--ticker-interval', '1m',
'--refresh-pairs-cached'] '--refresh-pairs-cached',
'--strategy-list',
'DefaultStrategy',
'TestStrategy'
]
call_args = Arguments(args, '').get_parsed_arg() call_args = Arguments(args, '').get_parsed_arg()
assert call_args.config == 'test_conf.json' assert call_args.config == 'test_conf.json'
assert call_args.live is True assert call_args.live is True
@ -141,6 +145,8 @@ def test_parse_args_backtesting_custom() -> None:
assert call_args.func is not None assert call_args.func is not None
assert call_args.ticker_interval == '1m' assert call_args.ticker_interval == '1m'
assert call_args.refresh_pairs is True assert call_args.refresh_pairs is True
assert type(call_args.strategy_list) is list
assert len(call_args.strategy_list) == 2
def test_parse_args_hyperopt_custom() -> None: def test_parse_args_hyperopt_custom() -> None:

View File

@ -292,6 +292,61 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
) )
def test_setup_configuration_with_stratlist(mocker, default_conf, caplog) -> None:
"""
Test setup_configuration() function
"""
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
arglist = [
'--config', 'config.json',
'backtesting',
'--ticker-interval', '1m',
'--export', '/bar/foo',
'--strategy-list',
'DefaultStrategy',
'TestStrategy'
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert 'strategy_list' in config
assert log_has('Using strategy list of 2 Strategies', caplog.record_tuples)
assert 'position_stacking' not in config
assert 'use_max_market_positions' not in config
assert 'timerange' not in config
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None: def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.configuration.open', mocker.mock_open( mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf) read_data=json.dumps(default_conf)