Merge pull request #7296 from th0rntwig/dbscan

Improve MinPts calculation in DBSCAN, add outlier protection, and add data_kitchen tests
This commit is contained in:
Robert Caulk
2022-08-28 14:37:47 +02:00
committed by GitHub
5 changed files with 119 additions and 8 deletions

View File

@@ -566,7 +566,6 @@ class FreqaiDataDrawer:
for training according to user defined train_period_days
metadata: dict = strategy furnished pair metadata
"""
with self.history_lock:
corr_dataframes: Dict[Any, Any] = {}
base_dataframes: Dict[Any, Any] = {}

View File

@@ -513,6 +513,19 @@ class FreqaiDataKitchen:
return avg_mean_dist
def get_outlier_percentage(self, dropped_pts: npt.NDArray) -> float:
"""
Check if more than X% of points werer dropped during outlier detection.
"""
outlier_protection_pct = self.freqai_config["feature_parameters"].get(
"outlier_protection_percentage", 30)
outlier_pct = (dropped_pts.sum() / len(dropped_pts)) * 100
if outlier_pct >= outlier_protection_pct:
self.svm_model = None
return outlier_pct
else:
return 0.0
def use_SVM_to_remove_outliers(self, predict: bool) -> None:
"""
Build/inference a Support Vector Machine to detect outliers
@@ -550,8 +563,16 @@ class FreqaiDataKitchen:
self.data_dictionary["train_features"]
)
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
dropped_points = np.where(y_pred == -1, 0, y_pred)
kept_points = np.where(y_pred == -1, 0, y_pred)
# keep_index = np.where(y_pred == 1)
outlier_pct = self.get_outlier_percentage(1 - kept_points)
if outlier_pct:
logger.warning(
f"SVM detected {outlier_pct:.2f}% of the points as outliers. "
f"Keeping original dataset."
)
return
self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
(y_pred == 1)
]
@@ -563,7 +584,7 @@ class FreqaiDataKitchen:
]
logger.info(
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
f"SVM tossed {len(y_pred) - kept_points.sum()}"
f" train points from {len(y_pred)} total points."
)
@@ -572,7 +593,7 @@ class FreqaiDataKitchen:
# to reduce code duplication
if self.freqai_config['data_split_parameters'].get('test_size', 0.1) != 0:
y_pred = self.svm_model.predict(self.data_dictionary["test_features"])
dropped_points = np.where(y_pred == -1, 0, y_pred)
kept_points = np.where(y_pred == -1, 0, y_pred)
self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
(y_pred == 1)
]
@@ -583,7 +604,7 @@ class FreqaiDataKitchen:
]
logger.info(
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
f"SVM tossed {len(y_pred) - kept_points.sum()}"
f" test points from {len(y_pred)} total points."
)
@@ -635,8 +656,8 @@ class FreqaiDataKitchen:
cos(angle) * (point[1] - origin[1])
return (x, y)
MinPts = len(self.data_dictionary['train_features'].columns) * 2
# measure pairwise distances to train_features.shape[1]*2 nearest neighbours
MinPts = int(len(self.data_dictionary['train_features'].index) * 0.25)
# measure pairwise distances to nearest neighbours
neighbors = NearestNeighbors(
n_neighbors=MinPts, n_jobs=self.thread_count)
neighbors_fit = neighbors.fit(self.data_dictionary['train_features'])
@@ -667,6 +688,14 @@ class FreqaiDataKitchen:
self.data['DBSCAN_min_samples'] = MinPts
dropped_points = np.where(clustering.labels_ == -1, 1, 0)
outlier_pct = self.get_outlier_percentage(dropped_points)
if outlier_pct:
logger.warning(
f"DBSCAN detected {outlier_pct:.2f}% of the points as outliers. "
f"Keeping original dataset."
)
return
self.data_dictionary['train_features'] = self.data_dictionary['train_features'][
(clustering.labels_ != -1)
]
@@ -722,6 +751,14 @@ class FreqaiDataKitchen:
0,
)
outlier_pct = self.get_outlier_percentage(1 - do_predict)
if outlier_pct:
logger.warning(
f"DI detected {outlier_pct:.2f}% of the points as outliers. "
f"Keeping original dataset."
)
return
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(
f"DI tossed {len(do_predict) - do_predict.sum()} predictions for "