Merge branch 'wohlgemuth' of https://github.com/berlinguyinca/freqtrade into wohlgemuth

This commit is contained in:
Gert Wohlgemuth 2018-06-19 09:56:57 -07:00
commit 39368baffd
6 changed files with 69 additions and 26 deletions

View File

@ -40,7 +40,7 @@ due to demand, it is possible to have a default stop loss, when you are in the r
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you are in the the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you are in the
black, it will be changed to be only a 1% stop loss black, it will be changed to be only a 1% stop loss
this can be configured in the main confiuration file, the following way: this can be configured in the main configuration file, the following way:
``` ```
"trailing_stop": { "trailing_stop": {

View File

@ -62,10 +62,10 @@ class Analyze(object):
'close': 'last', 'close': 'last',
'volume': 'max', 'volume': 'max',
}) })
frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle
return frame return frame
def populate_indicators(self, dataframe: DataFrame) -> DataFrame: def populate_indicators(self, dataframe: DataFrame, pair: str = None) -> DataFrame:
""" """
Adds several different TA indicators to the given DataFrame Adds several different TA indicators to the given DataFrame
@ -73,23 +73,23 @@ class Analyze(object):
you are using. Let uncomment only the indicator you are using in your strategies you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage. or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
""" """
return self.strategy.populate_indicators(dataframe=dataframe) return self.strategy.advise_indicators(dataframe=dataframe, pair=pair)
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame: def populate_buy_trend(self, dataframe: DataFrame, pair: str = None) -> DataFrame:
""" """
Based on TA indicators, populates the buy signal for the given dataframe Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame :param dataframe: DataFrame
:return: DataFrame with buy column :return: DataFrame with buy column
""" """
return self.strategy.populate_buy_trend(dataframe=dataframe) return self.strategy.advise_buy(dataframe=dataframe, pair=pair)
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame: def populate_sell_trend(self, dataframe: DataFrame, pair: str = None) -> DataFrame:
""" """
Based on TA indicators, populates the sell signal for the given dataframe Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame :param dataframe: DataFrame
:return: DataFrame with buy column :return: DataFrame with buy column
""" """
return self.strategy.populate_sell_trend(dataframe=dataframe) return self.strategy.advise_sell(dataframe=dataframe, pair=pair)
def get_ticker_interval(self) -> str: def get_ticker_interval(self) -> str:
""" """
@ -98,16 +98,17 @@ class Analyze(object):
""" """
return self.strategy.ticker_interval return self.strategy.ticker_interval
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame: def analyze_ticker(self, ticker_history: List[Dict], pair: str) -> DataFrame:
""" """
Parses the given ticker history and returns a populated DataFrame Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data :return DataFrame with ticker data and indicator data
""" """
dataframe = self.parse_ticker_dataframe(ticker_history) dataframe = self.parse_ticker_dataframe(ticker_history)
dataframe = self.populate_indicators(dataframe) dataframe = self.populate_indicators(dataframe, pair)
dataframe = self.populate_buy_trend(dataframe) dataframe = self.populate_buy_trend(dataframe, pair)
dataframe = self.populate_sell_trend(dataframe) dataframe = self.populate_sell_trend(dataframe, pair)
return dataframe return dataframe
def get_signal(self, pair: str, interval: str) -> Tuple[bool, bool]: def get_signal(self, pair: str, interval: str) -> Tuple[bool, bool]:
@ -123,7 +124,7 @@ class Analyze(object):
return False, False return False, False
try: try:
dataframe = self.analyze_ticker(ticker_hist) dataframe = self.analyze_ticker(ticker_hist, pair)
except ValueError as error: except ValueError as error:
logger.warning( logger.warning(
'Unable to analyze ticker for pair %s: %s', 'Unable to analyze ticker for pair %s: %s',

View File

@ -156,7 +156,7 @@ class FreqtradeBot(object):
state_changed |= self.process_maybe_execute_sell(trade) state_changed |= self.process_maybe_execute_sell(trade)
# Then looking for buy opportunities # Then looking for buy opportunities
if (self.config['disable_buy']): if (self.config.get('disable_buy', False)):
logger.info('Buy disabled...') logger.info('Buy disabled...')
else: else:
if len(trades) < self.config['max_open_trades']: if len(trades) < self.config['max_open_trades']:
@ -250,7 +250,7 @@ class FreqtradeBot(object):
balance = self.config['bid_strategy']['ask_last_balance'] balance = self.config['bid_strategy']['ask_last_balance']
ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask']) ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
if self.config['bid_strategy']['use_book_order']: if self.config['bid_strategy'].get('use_book_order', False):
logger.info('Getting price from Order Book') logger.info('Getting price from Order Book')
orderBook = exchange.get_order_book(pair) orderBook = exchange.get_order_book(pair)
orderBook_rate = orderBook['bids'][self.config['bid_strategy']['book_order_top']][0] orderBook_rate = orderBook['bids'][self.config['bid_strategy']['book_order_top']][0]
@ -444,14 +444,14 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
if self.config.get('experimental', {}).get('use_sell_signal'): if self.config.get('experimental', {}).get('use_sell_signal'):
(buy, sell) = self.analyze.get_signal(trade.pair, self.analyze.get_ticker_interval()) (buy, sell) = self.analyze.get_signal(trade.pair, self.analyze.get_ticker_interval())
if self.config['ask_strategy']['use_book_order']: if 'ask_strategy' in self.config and self.config['ask_strategy'].get('use_book_order', False):
logger.info('Using order book for selling...') logger.info('Using order book for selling...')
orderBook = exchange.get_order_book(trade.pair) orderBook = exchange.get_order_book(trade.pair)
# logger.debug('Order book %s',orderBook) # logger.debug('Order book %s',orderBook)
orderBook_min = self.config['ask_strategy']['book_order_min'] orderBook_min = self.config['ask_strategy']['book_order_min']
orderBook_max = self.config['ask_strategy']['book_order_max'] orderBook_max = self.config['ask_strategy']['book_order_max']
for i in range(orderBook_min, orderBook_max+1): for i in range(orderBook_min, orderBook_max + 1):
orderBook_rate = orderBook['asks'][i-1][0] orderBook_rate = orderBook['asks'][i - 1][0]
# if orderbook has higher rate (high profit), # if orderbook has higher rate (high profit),
# use orderbook, otherwise just use sell rate # use orderbook, otherwise just use sell rate
if (sell_rate < orderBook_rate): if (sell_rate < orderBook_rate):
@ -502,7 +502,7 @@ with limit `{buy_limit:.8f} ({stake_amount:.6f} \
ordertime = arrow.get(order['datetime']).datetime ordertime = arrow.get(order['datetime']).datetime
# Check if trade is still actually open # Check if trade is still actually open
if (int(order['filled']) == 0) and (order['status'] == 'open'): if order['status'] == 'open':
if order['side'] == 'buy' and ordertime < buy_timeoutthreashold: if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
self.handle_timedout_limit_buy(trade, order) self.handle_timedout_limit_buy(trade, order)
elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold: elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold:

View File

@ -2,12 +2,12 @@
IStrategy interface IStrategy interface
This module defines the interface to apply for strategies This module defines the interface to apply for strategies
""" """
import warnings
from typing import Dict from typing import Dict
from abc import ABC, abstractmethod
from abc import ABC
from pandas import DataFrame from pandas import DataFrame
class IStrategy(ABC): class IStrategy(ABC):
""" """
Interface for freqtrade strategies Interface for freqtrade strategies
@ -19,30 +19,71 @@ class IStrategy(ABC):
ticker_interval -> str: value of the ticker interval to use for the strategy ticker_interval -> str: value of the ticker interval to use for the strategy
""" """
# associated minimal roi
minimal_roi: Dict minimal_roi: Dict
# associated stoploss
stoploss: float stoploss: float
# associated ticker interval
ticker_interval: str ticker_interval: str
@abstractmethod
def populate_indicators(self, dataframe: DataFrame) -> DataFrame: def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
""" """
Populate indicators that will be used in the Buy and Sell strategy Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe() :param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:return: a Dataframe with all mandatory indicators for the strategies :return: a Dataframe with all mandatory indicators for the strategies
""" """
warnings.warn("deprecated - please replace this method with advise_indicators!", DeprecationWarning)
return dataframe
@abstractmethod
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame: def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
""" """
Based on TA indicators, populates the buy signal for the given dataframe Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame :param dataframe: DataFrame
:return: DataFrame with buy column :return: DataFrame with buy column
""" """
warnings.warn("deprecated - please replace this method with advise_buy!", DeprecationWarning)
dataframe.loc[(), 'buy'] = 0
return dataframe
@abstractmethod
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame: def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
""" """
Based on TA indicators, populates the sell signal for the given dataframe Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame :param dataframe: DataFrame
:return: DataFrame with sell column :return: DataFrame with sell column
""" """
warnings.warn("deprecated - please replace this method with advise_sell!", DeprecationWarning)
dataframe.loc[(), 'sell'] = 0
return dataframe
def advise_indicators(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
This wraps around the internal method
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param pair: The currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
return self.populate_indicators(dataframe)
def advise_buy(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param pair: The currently traded pair
:return: DataFrame with buy column
"""
return self.populate_buy_trend(dataframe)
def advise_sell(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param pair: The currently traded pair
:return: DataFrame with sell column
"""
return self.populate_sell_trend(dataframe)

View File

@ -40,6 +40,7 @@ class StrategyResolver(object):
self.strategy: IStrategy = self._load_strategy(strategy_name, self.strategy: IStrategy = self._load_strategy(strategy_name,
extra_dir=config.get('strategy_path')) extra_dir=config.get('strategy_path'))
# Set attributes # Set attributes
# Check if we need to override configuration # Check if we need to override configuration
if 'minimal_roi' in config: if 'minimal_roi' in config:
@ -125,7 +126,7 @@ class StrategyResolver(object):
strategy_name = os.path.splitext(name)[0] strategy_name = os.path.splitext(name)[0]
print("stored downloaded stat at: {}".format(temp)) # print("stored downloaded stat at: {}".format(temp))
# register temp path with the bot # register temp path with the bot
abs_paths.insert(0, temp.absolute()) abs_paths.insert(0, temp.absolute())

View File

@ -16,7 +16,7 @@ def load_dataframe_pair(pairs):
dataframe = ld[pairs[0]] dataframe = ld[pairs[0]]
analyze = Analyze({'strategy': 'DefaultStrategy'}) analyze = Analyze({'strategy': 'DefaultStrategy'})
dataframe = analyze.analyze_ticker(dataframe) dataframe = analyze.analyze_ticker(dataframe, pairs[0])
return dataframe return dataframe